Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Use of peat-based sorbents for removal of arsenic compounds

1229Department of Environmental Science, University of Latvia, Riga LV, 1586, Latvia

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Chemistry. Volume 11, Issue 6, Pages 988–1000, ISSN (Online) 2391-5420, DOI: 10.2478/s11532-013-0229-0, March 2013

Publication History

Published Online:


It is important to apply sorbent materials for purification of water from arsenic contamination due to serious arsenic pollution worldwide. We have developed new sorbents based on natural materials that provide a cheap and environmentally friendly alternative. For the first time, peat modified with iron compounds and iron humates were tested for sorption of arsenic compounds. The highest sorption capacity was found in peat modified with iron compounds. We have found that sorption of different arsenic speciation forms was strongly dependent on solution pH, reaction time and temperature. Calculations of the sorption process using thermodynamic parameters indicate the spontaneity of sorption process and its endothermic nature. Sorption kinetics showed that most arsenates are removed within 2 hours, and the kinetics of arsenate sorption on modified peat can be described by the pseudo-second order mechanism.

Keywords: Peat; Iron humates; Arsenic; Sorption; Sorption model

  • [1] K.R. Henke (Ed.), Arsenic: environmental chemistry, health threats, and waste treatment (John Wiley and Sons, Wiltshire, 2009)

  • [2] L. Dupont, G. Jolly, M. Aplincourt, Environ. Chem. Lett. 5(3), 125 (2007) http://dx.doi.org/10.1007/s10311-007-0092-3 [CrossRef]

  • [3] F. Zhang, H. Itoh, Chemosphere 60, 319 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.12.019 [CrossRef]

  • [4] P.D. Nemade, A.M. Kadam, H. S. Shankar, J. Environ. Biol. 30(4), 499 (2009)

  • [5] T.S. Anirudhan, M.R. Unnithan, Chemosphere 66, 60 (2007) http://dx.doi.org/10.1016/j.chemosphere.2006.05.031 [CrossRef]

  • [6] I. Ko, J. Kim, K. Kim, Colloids Surf A: Physicochem. Eng. Aspects 234, 43 (2004) http://dx.doi.org/10.1016/j.colsurfa.2003.12.001 [CrossRef]

  • [7] S.K. Maji, A. Pal, T. Pal, A. Adak, J. Surf. Sci. Technol. 22(3–4), 161 (2007)

  • [8] J.R. Parga, V. Vazquez, H. Moreno, J. Metall., DOI:10.1155/2009/286971 [CrossRef]

  • [9] D. Mohan, A.U. Jr. Pittman, J. Haz. Mat. 142, 1 (2007) http://dx.doi.org/10.1016/j.jhazmat.2007.01.006 [CrossRef]

  • [10] C. Mikutta, R. Kretzschmar, Env. Sci. Technol. 45, 9550 (2011) http://dx.doi.org/10.1021/es202300w [CrossRef]

  • [11] Z. Gu, J. Fang, B. Deng, Environ. Sci. Technol. 39, 3833 (2005) http://dx.doi.org/10.1021/es048179r [CrossRef]

  • [12] M.J. DeMarco, A.K. SenGupta, J.E. Greenleaf, Wat. Res. 37, 164 (2003) http://dx.doi.org/10.1016/S0043-1354(02)00238-5 [CrossRef]

  • [13] J. Sire, PhD thesis (University of Latvia, Riga, 2010)

  • [14] J. Coates, In: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (John Wiley and Sons, Chichester, 2000) 10815

  • [15] O.M. Vatutsina, V.S. Soldatov, V.I. Sokolova, J. Johann, M. Bissen, A. Weissenbacher, React. Funct. Polym. 67, 184 (2007) http://dx.doi.org/10.1016/j.reactfunctpolym.2006.10.009 [CrossRef]

  • [16] Y. Ho, A.E. Ofomaja, Process Biochem. 40, 3455 (2005) http://dx.doi.org/10.1016/j.procbio.2005.02.017 [CrossRef]

  • [17] J. Buschmann, A. Kappeler, U. Lindauer, D. Kistler, M. Berg, L. Sigg, Environ. Sci.Technol. 40, 6015 (2006) http://dx.doi.org/10.1021/es061057+ [CrossRef]

  • [18] B. An, T.R. Steinwinder, D. Zhao, Wat. Res. 39, 4993 (2005) http://dx.doi.org/10.1016/j.watres.2005.10.014 [CrossRef]

  • [19] L. Dambies, R. Salinaro, S.D. Alexandratos, Environ. Sci. Technol. 38, 6139 (2004) http://dx.doi.org/10.1021/es040312s [CrossRef]

  • [20] M.A. Wilson, N.H. Tran, A.S. Milev, G.S.K. Kannangara, H. Volk, M.G.C. Lu, Geoderma 146, 291 (2008) http://dx.doi.org/10.1016/j.geoderma.2008.06.004 [CrossRef]

  • [21] A. Ramesh, D.J. Lee, J.W.C. Wong, J. Colloid Interface Sci. 291, 588 (2005) http://dx.doi.org/10.1016/j.jcis.2005.04.084 [CrossRef]

  • [22] F. Partey, D. Norman, S. Ndur, R. Nartey, J. Colloid Interface Sci. 321, 493 (2008) http://dx.doi.org/10.1016/j.jcis.2008.02.034 [CrossRef]

  • [23] Y. Ho, G. McKay, Process Biochem. 34, 451 (1999) http://dx.doi.org/10.1016/S0032-9592(98)00112-5 [CrossRef]

  • [24] R. Gündoğan, B. Acemioğlu, M. H. Alma, J. Colloid Interface Sci. 269, 303 (2004) http://dx.doi.org/10.1016/S0021-9797(03)00762-8 [CrossRef]

  • [25] Y. Ho, G. McKay, Wat. Res. 34(3), 735 (2000) http://dx.doi.org/10.1016/S0043-1354(99)00232-8 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lílian Karla de Oliveira, Camila Almeida Melo, Danielle Goveia, Fabiana Aparecida Lobo, Maria Aurora Armienta Hernández, Leonardo Fernandes Fraceto, and André Henrique Rosa
Environmental Technology, 2015, Volume 36, Number 2, Page 149
George Skodras, Paris Kokorotsikos, and Maria Serafidou
Central European Journal of Chemistry, 2014, Volume 12, Number 1, Page 33

Comments (0)

Please log in or register to comment.