Jump to ContentJump to Main Navigation

Chemical Papers

12 Issues per year

IMPACT FACTOR increased in 2014: 1.468

SCImago Journal Rank (SJR) 2014: 0.368
Source Normalized Impact per Paper (SNIP) 2014: 0.684
Impact per Publication (IPP) 2014: 1.284



Comparison of different technologies for alginate beads production

1Johan Heinrich von Thunen-Insitute (vTI)

2University of Perugia

3Slovak Academy of Sciences

4University of Belgrade

5Polish Academy of Sciences

6Institute Meurice

7University of Belgrade


9geniaLab GmbH

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Chemical Papers. Volume 62, Issue 4, Pages 364–374, ISSN (Online) 1336-9075, DOI: 10.2478/s11696-008-0035-x, June 2008

Publication History

Published Online:


This paper describes the results of the round robin experiment “Bead production technologies” carried out during the COST 840 action “Bioencapsulation Innovation and Technologies” within the 5th Framework Program of the European Community. In this round robin experiment, calcium alginate hydrogel beads with the diameter of (800 ± 100) μm were produced by the most common bead production technologies using 0.5–4 mass % sodium alginate solutions as starting material. Dynamic viscosity of the alginate solutions ranged from less than 50 mPa s up to more than 10000 mPa s. With the coaxial air-flow and electrostatic enhanced dropping technologies as well as with the JetCutter technology in the soft-landing mode, beads were produced from all alginate solutions, whereas the vibration technology was not capable to process the high-viscosity 3 % and 4 % alginate solutions. Spherical beads were generated by the electrostatic and the JetCutter technologies. Slightly deformed beads were obtained from high-viscosity alginate solutions using the coaxial airflow and from the 0.5 % and 2 % alginate solutions using the vibration technology. The rate of bead production using the JetCutter was about 10 times higher than with the vibration technology and more than 10000 times higher than with the coaxial air-flow and electrostatic technology.

Keywords: droplet generation; coaxial air-flow; electrostatic; vibration; JetCutter; alginate beads

  • [1] Anilkumar, A. V., Lacík, I., & Wang, T. G. (2001). A novel reactor for making uniform capsules. Biotechnology and Bioengineering, 75, 581–589. DOI: 10.1002/bit.10077. http://dx.doi.org/10.1002/bit.10077 [CrossRef]

  • [2] Brandenberger, H., & Widmer, F. (1998). A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. Journal of Biotechnology, 63, 73–80. DOI: 10.1016/S0168-1656(98)00077-7. http://dx.doi.org/10.1016/S0168-1656(98)00077-7 [CrossRef] [Web of Science]

  • [3] Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006. http://dx.doi.org/10.1016/j.enzmictec.2004.07.006 [CrossRef]

  • [4] Bugarski, B., Li, Q. L., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., & Vunjak, G. (1994). Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE Journal, 40, 1026–1031. DOI: 10.1002/aic.690400613. http://dx.doi.org/10.1002/aic.690400613 [CrossRef]

  • [5] Bugarski, B., Obradovic, B., Nedovic, V., & Poncelet, D. (2004). Immobilization of cells and enzymes using electrostatic droplet generation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 277–294). Dordrecht: Kluwer Academic Publishers.

  • [6] Heinzen, C., Berger, A., & Marison, I. (2004). Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 257–275). Dordrecht: Kluwer Academic Publishers.

  • [7] Heinzen, C., Marison, I., Berger, A., & von Stockar, U. (2002). Use of vibration technology for jet break-up for encapsulation of cells, microbes and liquids in monodisperse microcapsules. Landbauforschung Völkenrode, SH241, 19–25.

  • [8] Lacík, I., Briššová, M., Anilkumar, A. V., Powers, A. C., and Wang, T. (1998). New capsule with tailored properties for the encapsulation of living cells. Journal of Biomedical Materials Research, 39, 52–60. DOI: 10.1002/(SICI)1097-4636(199801)39:1〈52::AID-JBM7〉3.0.CO;2-H. http://dx.doi.org/10.1002/(SICI)1097-4636(199801)39:1<52::AID-JBM7>3.0.CO;2-H [CrossRef]

  • [9] Lewińska, D., Rosiński, S., & Weryński, A. (2004). Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 41–53. DOI: 10.1081/BIO-120028667. http://dx.doi.org/10.1081/BIO-120028667 [CrossRef]

  • [10] Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2006). Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 81, 505–510. DOI: 10.1002/jctb.1465. http://dx.doi.org/10.1002/jctb.1465 [CrossRef]

  • [11] Melvik, J. E., & Dornish, M. (2004). Alginate as a carrier for cell immobilisation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 33–51). Dordrecht: Kluwer Academic Publishers.

  • [12] Nedovic, V., Obradovic, B., Poncelet, D., Goosen, M. F. A., Leskosek-Cukalovic, I., & Bugarski, B. (2002). Cell immobilisation by electrostatic droplet generation. Landbauforschung Völkenrode, SH241, 11–17.

  • [13] Neufeld, R. J., & Poncelet, D. (2004). Industrial scale encapsulation of cells using emulsification/dispersion technologies. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 311–325). Dordrecht: Kluwer Academic Publishers.

  • [14] Ogbonna, J. C. (2004). Atomisation techniques for immobilisation of cells in micro gel beads. In V Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 327–341). Dordrecht: Kluwer Academic Publishers.

  • [15] Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A, & Bugarski, B. (1999a). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 79, 213–228. DOI: 10.1016/S0001-8686(97)00037-7. http://dx.doi.org/10.1016/S0001-8686(97)00037-7 [CrossRef]

  • [16] Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., & Goosen, M. F. A. (1994). A parallel-plate electrostatic droplet generator — Parameters affecting microbead size. Applied Microbiology and Biotechnology, 42, 251–255. DOI: 10.1007/BF00902725. http://dx.doi.org/10.1007/BF00902725 [CrossRef]

  • [17] Poncelet, D., Neufeld, R. J., Goosen, M. F. A, Burgarski, B., & Babak, V. (1999b). Formation of microgel beads by electric dispersion of polymer solutions. AIChE Journal, 45, 2018–2023. DOI: 10.1002/aic.690450918. http://dx.doi.org/10.1002/aic.690450918 [CrossRef]

  • [18] Poncelet, D., Teunou, E., Desrumaux, A., & Della Valle, D. (2002). Emulsification and microencapsulation: State of art. Landbauforschung Völkenrode, SH241, 27–31.

  • [19] Prüsse, U., Dalluhn, J., Breford, J., & Vorlop, K.-D. (2000). Production of spherical beads by JetCutting. Chemical Engineering & Technology, 23, 1105–1110. DOI: 10.1002/1521-4125(200012)23:12〈1105::AID-CEAT1105〉3.0.CO;2-V. http://dx.doi.org/10.1002/1521-4125(200012)23:12<1105::AID-CEAT1105>3.0.CO;2-V [CrossRef]

  • [20] Prüsse, U., Jahnz, U., Wittlich, P., Breford, J., & Vorlop, K.-D. (2002). Bead production with JetCutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode, SH241, 1–10.

  • [21] Prüsse, U., & Vorlop, K.-D. (2004). The JetCutter technology. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 295–309). Dordrecht: Kluwer Academic Publishers.

  • [22] Rosiński, S., Lewińska, D., Migaj, M., Wozniewicz, B., Weryński, A. (2002). Electrostatic microencapsulation of parathyroid cells as a tool for the investigation of cell’s activity after transplantation. Landbauforschung Völkenrode, SH241, 47–50.

  • [23] Schwinger, C., Koch, S., Jahnz, U., Wittlich, P., Rainov, N. G., Kressler, J. (2002). High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. Journal of Microencapsulation, 19, 273–280. DOI: 10.1080/02652040110105328. http://dx.doi.org/10.1080/02652040110105328 [CrossRef]

  • [24] Strand, B. L., Skjak-Braek, G., & Gaserod, O. (2004). Microcapsule formulation and formation. In V. Nedovic, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology, Vol. 8A (pp. 165–183). Dordrecht: Kluwer Academic Publishers.

  • [25] Vorlop, K.-D., & Klein, J. (1983). New developments in the field of cell immobilization — Formation of biocatalysts by ionotropic gelation. In R. M. Lafferty, & E. Maier (Eds.), Enzyme technology (pp. 221–235). Berlin: Springer.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pasquale Del Gaudio, Felicetta De Cicco, Francesca Sansone, Rita Patrizia Aquino, Renata Adami, Maurizio Ricci, and Stefano Giovagnoli
Carbohydrate Polymers, 2015
Katherine C. Filippino, Margaret R. Mulholland, and Charles B. Bott
Algal Research, 2015, Volume 11, Page 125
Verica Đorđević, Bojana Balanč, Ana Belščak-Cvitanović, Steva Lević, Kata Trifković, Ana Kalušević, Ivana Kostić, Draženka Komes, Branko Bugarski, and Viktor Nedović
Food Engineering Reviews, 2014
Ferdinand Ruedinger, Antonina Lavrentieva, Cornelia Blume, Iliyana Pepelanova, and Thomas Scheper
Applied Microbiology and Biotechnology, 2015, Volume 99, Number 2, Page 623
Anita Klaus, Maja Kozarski, Jovana Vunduk, Nina Todorovic, Dragica Jakovljevic, Zeljko Zizak, Vladimir Pavlovic, Steva Levic, Miomir Niksic, and Leo J.L.D. Van Griensven
Food Research International, 2015, Volume 67, Page 272
Steva Lević, Ivana Pajić Lijaković, Verica Đorđević, Vladislav Rac, Vesna Rakić, Tatjana Šolević Knudsen, Vladimir Pavlović, Branko Bugarski, and Viktor Nedović
Food Hydrocolloids, 2015, Volume 45, Page 111
Swapnil V. Bhujbal, Bart de Haan, Simone P. Niclou, and Paul de Vos
Scientific Reports, 2014, Volume 4, Page 6856
Andrea Schenkmayerová, Marek Bučko, Peter Gemeiner, Dušana Treľová, Igor Lacík, Dušan Chorvát, Pavel Ačai, Milan Polakovič, Lukáš Lipták, Martin Rebroš, Michal Rosenberg, Vladimír Štefuca, Vilém Neděla, and Eva Tihlaříková
Applied Biochemistry and Biotechnology, 2014, Volume 174, Number 5, Page 1834
Massimiliano Borgogna, Barbara Bellich, and Attilio Cesàro
Marine Drugs, 2011, Volume 9, Number 12, Page 2572
Gregoria Mitropoulou, Viktor Nedovic, Arun Goyal, and Yiannis Kourkoutas
Journal of Nutrition and Metabolism, 2013, Volume 2013, Page 1
Marina Vemmer and Anant V. Patel
Biological Control, 2013, Volume 67, Number 3, Page 380
B.-B. Lee, P. Ravindra, and E.-S. Chan
Chemical Engineering & Technology, 2013, Page n/a
Stefania Mazzitelli, Lorenzo Capretto, Federico Quinci, Roberta Piva, and Claudio Nastruzzi
Advanced Drug Delivery Reviews, 2013, Volume 65, Number 11-12, Page 1533
Cara Young, Kester Rozario, Christophe Serra, Laura Poole-Warren, and Penny Martens
Biomicrofluidics, 2013, Volume 7, Number 4, Page 044109
Bojan Čalija, Nebojša Cekić, Snežana Savić, Rolf Daniels, Bojan Marković, and Jela Milić
Colloids and Surfaces B: Biointerfaces, 2013, Volume 110, Page 395
Sathasivam Thenapakiam, Devakumar Ganesh Kumar, Janarthanan Pushpamalar, and Muniyandy Saravanan
Carbohydrate Polymers, 2013, Volume 94, Number 1, Page 356
Marek Bučko, Danica Mislovičová, Jozef Nahálka, Alica Vikartovská, Jana Šefčovičová, Jaroslav Katrlík, Ján Tkáč, Peter Gemeiner, Igor Lacík, Vladimír Štefuca, Milan Polakovič, Michal Rosenberg, Martin Rebroš, Daniela Šmogrovičová, and Juraj Švitel
Chemical Papers, 2012, Volume 66, Number 11
Ulf Prüße, Peter Jarzombek, and Klaus-Dieter Vorlop
Topics in Catalysis, 2012, Volume 55, Number 7-10, Page 453
Cara J. Young, Laura A. Poole-Warren, and Penny J. Martens
Biotechnology and Bioengineering, 2012, Volume 109, Number 6, Page 1561
Corinne A. Hoesli, Roger L. J. Kiang, Dušana Mocinecová, Madeleine Speck, Daniela Jochec Mošková, Christine Donald-Hague, Igor Lacík, Timothy J. Kieffer, and James M. Piret
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, Volume 100B, Number 4, Page 1017
D. Lewińska, A. Chwojnowski, C. Wojciechowski, B. Kupikowska-Stobba, M. Grzeczkowicz, and A. Weryński†
Separation Science and Technology, 2012, Volume 47, Number 3, Page 463
Viktor Nedovic, Ana Kalusevic, Verica Manojlovic, Steva Levic, and Branko Bugarski
Procedia Food Science, 2011, Volume 1, Page 1806
Micheal Whelehan and Ian W Marison
Journal of Microencapsulation, 2011, Volume 28, Number 8, Page 669
Leena-Stiina Kontturi, Marjo Yliperttula, Pyry Toivanen, Antti Määttä, Ann-Marie Määttä, and Arto Urtti
Journal of Controlled Release, 2011, Volume 152, Number 3, Page 376
Maria Raytchinova Kosseva
Food and Bioprocess Technology, 2011, Volume 4, Number 6, Page 1089
Amanda K. Andriola Silva Brun-Graeppi, Cyrille Richard, Michel Bessodes, Daniel Scherman, and Otto-Wilhelm Merten
Journal of Controlled Release, 2011, Volume 149, Number 3, Page 209
Jean-Michel Rabanel, Xavier Banquy, Hamza Zouaoui, Mohamed Mokhtar, and Patrice Hildgen
Biotechnology Progress, 2009, Volume 25, Number 4, Page 946

Comments (0)

Please log in or register to comment.