Jump to ContentJump to Main Navigation

Chemical Papers

12 Issues per year


IMPACT FACTOR increased in 2013: 1.193

SCImago Journal Rank (SJR): 0.315
Source Normalized Impact per Paper (SNIP): 0.630

VolumeIssuePage

Issues

Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites

1Government First Grade College

2H.K.E. Society’s Matoshree Taradevi Institute of Pharmaceutical Sciences

3Government First Grade College

4Indian Institute of Science

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Chemical Papers. Volume 67, Issue 3, Pages 350–356, ISSN (Online) 1336-9075, DOI: 10.2478/s11696-012-0270-z, December 2012

Publication History

Published Online:
2012-12-27

Abstract

The polyaniline-PbO composites of various mass fractions were prepared by in situ polymerisation. The prepared samples were characterised by FTIR, and the dominant peaks confirmed the formation of polyaniline-PbO composites. The SEM study shows a granular agglomerated morphology, and increases with an increase in the lead oxide mass % in polyaniline. Direct current (DC) conductivity (σ DC) was studied as a function of temperature (T). From these studies, it was found that conductivity increased at higher temperatures due to the polarons hopping from one localised state to another. DSC studies reveal, the decrease in peak temperature from 273°C (pure PANI) to 169.2°C, 193.5°C, 218.4°C, 235.2°C, and 224.2°C, respectively for the various mass fractions (10 %, 30 %, 20 %, 40 %, and 50 %) of polyaniline-PbO composites.

Keywords: polyaniline; lead oxide; DC conductivity; DSC; SEM

  • [1] Abdiryim, T., Ubul, A., Jamal, R., Tian, Y., Awut, T., & Nurulla, I. (2012). Solid-state synthesis and characterization of polyaniline/nano-TiO2 composite. Journal of Applied Polymer Science, 126, 697–705. DOI: 10.1002/app.36857. http://dx.doi.org/10.1002/app.36857 [CrossRef]

  • [2] Anilkumar, K. R., Parveen, A., Badiger, G. R., & Ambika Prasad, M. V. N. (2009). Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Physica B: Condensed Matter, 404, 1664–1667. DOI: 10.1016/j.physb.2009.01.046. http://dx.doi.org/10.1016/j.physb.2009.01.046 [CrossRef] [Web of Science]

  • [3] Bae, W. J., Kim, K. H., Jo, W. H., & Park, Y. H. (2004) Exfoliated nanocomposite from polyaniline graft copolymer/clay. Macromolecules, 37, 9850–9854. DOI: 10.1021/ma048829b. http://dx.doi.org/10.1021/ma048829b [CrossRef]

  • [4] Chakraborty, G., Gupta, K., Meikap, A. K., Babu, R., & Blau, W. J. (2011). Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. Journal of Applied Physics, 109, 033707. DOI: 10.1063/1.3544204. http://dx.doi.org/10.1063/1.3544204 [CrossRef]

  • [5] Chu, C. W., Chen, F., Shulman, J., Tsui, S., Xue, Y. Y., Wen, W., & Sheng, P. (2005). A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. In I. Bozovic, & D. Pavuna (Eds.), Strongly correlated electron materials: Physics and nanoengineering (Proceedings of SPIE, Vol. 5932, pp. 139–148). DOI: 10.1117/12.626267. [CrossRef]

  • [6] Devi, P. I., & Ramachandran, K. (2011). Dielectric studies on hybridised PVDF-ZnO nanocomposites. Journal of Experimental Nanoscience, 6, 281–293. DOI: 10.1080/17458080.2010.497947. http://dx.doi.org/10.1080/17458080.2010.497947 [Web of Science] [CrossRef]

  • [7] Javadi, H. H. S., Cromack, K. R., MacDiarmid, A. G., & Epstein, A. J. (1989). Microwave transport in the emeraldine form of polyaniline. Physical Review B, 39, 3579–3584. DOI: 10.1103/PhysRevB.39.3579. http://dx.doi.org/10.1103/PhysRevB.39.3579 [CrossRef]

  • [8] Jia, W., Segal, E., Kornemandel, D., Lamhot, Y., Narkis, M., & Siegmann, A. (2002). Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization. Synthetic Metals, 128, 115–120. DOI: 10.1016/s0379-6779(01)00672-5. http://dx.doi.org/10.1016/S0379-6779(01)00672-5 [CrossRef] [Web of Science]

  • [9] Kerr, T. A., Wu, H., & Nazar, L. F. (1996). Concurrent polymerization and insertion of aniline in molybdenum trioxide: Formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chemistry of Materials, 8, 2005–2015. DOI: 10.1021/cm960071q. http://dx.doi.org/10.1021/cm960071q

  • [10] Kim, K. H., Kim, K. H., Huh, J., & Jo, W. H. (2007). Synthesis of thermally stable organosilicate for exfoliated poly(ethylene terephthalate) nanocomposite with superior tensile properties. Macromolecular Research, 15, 178–184. DOI: 10.1007/bf03218771. http://dx.doi.org/10.1007/BF03218771 [CrossRef] [Web of Science]

  • [11] Li, X. G., Li, A., & Huang, M. R. (2008). Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity. Chemistry — A European Journal, 14, 10309–10317. DOI: 10.1002/chem.200801025. http://dx.doi.org/10.1002/chem.200801025 [Web of Science] [CrossRef]

  • [12] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly (anilineco-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000 506. http://dx.doi.org/10.1002/chem.201000506 [CrossRef] [Web of Science]

  • [13] Li, X. G., Feng, H., Huang, M. R., Gu, G. L., & Moloney, M. G. (2012). Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. Analytical Chemistry, 84, 134–140. DOI: 10.1021/ac2028886. http://dx.doi.org/10.1021/ac2028886 [Web of Science] [CrossRef]

  • [14] Parveen, A., Anil Kumar, K., Revanasidappa, M., Ekhilikar, S., & Ambika Prasad, M. V. N. (2008). Dielectric spectroscopy of PANI-CaTiO3 composites. Ferroelectrics, 377, 63–74. DOI: 10.1080/00150190802523594. http://dx.doi.org/10.1080/00150190802523594 [CrossRef]

  • [15] Patil, R., Roy, A. S., Anilkumar, K. R., Ambika Prasad, M. V. N., & Ekhelikar, S. (2011). Electrical conductivity of polyaniline/NiZnO3 composites: A solid state electrolyte. Ferroelectric, 423, 77–85. DOI: 10.1080/00150193.2011.620836. http://dx.doi.org/10.1080/00150193.2011.620836 [CrossRef]

  • [16] Ramamurthy, P. C., Harrell, W. R., Gregory, R. V., Sadanadan, B., & Rao, A. M. (2004). Polyaniline/carbon nanotube composite Schottky contacts. Polymer Engineering & Science, 44, 28–33. DOI: 10.1002/pen.20002. http://dx.doi.org/10.1002/pen.20002 [CrossRef]

  • [17] Ramamurthy, P. C., Mallya, A. N., Joseph, A., Harrell, W. R., & Gregory, R. V. (2012). Synthesis and characterization of high molecular weight polyaniline for organic electronic applications. Polymer Engineering & Science, 52, 1821–1830. DOI: 10.1002/pen.23096. http://dx.doi.org/10.1002/pen.23096 [CrossRef]

  • [18] Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011a). Core-shell method of synthesis, characterizations, and ac conductivity studies of polyaniline/n-TiO2 composites. Journal of Applied Polymer Science, 121, 676–680. DOI: 10.1002/app.33730. http://dx.doi.org/10.1002/app.33730 [CrossRef]

  • [19] Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011b). Impedance spectroscopic studies on nanometric polyaniline/CdO composites. Ferroelectrics, 413, 279–290. DOI: 10.1080/00150193.2011.531190. http://dx.doi.org/10.1080/00150193.2011.531190 [CrossRef] [Web of Science]

  • [20] Roy, A. S., Anilkumar, K. R., Sasikala, M., Machappa, T., & Prasad, M. V. N. A. (2011c). Sensitivity enhancement for LPG detection by employing cadmium oxide doped in nanocrystalline polyaniline. Sensor Letters, 9, 1342–1348. DOI: 10.1166/sl.2011.1679. http://dx.doi.org/10.1166/sl.2011.1679 [Web of Science] [CrossRef]

  • [21] Somani, P. R., Marimuthu, R., Mulik, U. P., Sainkar, S. R., & Amalnerkar, D. P. (1999). High piezoresistivity and its origin in conducting polyaniline/TiO2 composites. Synthetic Metals, 106, 45–52. DOI: 10.1016/s0379-6779(99)00081-8. http://dx.doi.org/10.1016/S0379-6779(99)00081-8 [CrossRef]

  • [22] Su, S. J., & Kuramoto, N. (2000). Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals, 114, 147–153. DOI: 10.1016/s0379-6779(00)00238-1. http://dx.doi.org/10.1016/S0379-6779(00)00238-1 [CrossRef]

  • [23] Tunç, T., Uslu, H., & Altındal, S. (2011). Preparation and dielectric properties of polyvinyl alcohol (Co, Zn acetate) fiber/n-Si and polyvinyl alcohol (Ni, Zn acetate)/n-Si Schottky diodes. Fibers and Polymers, 12, 886–892. DOI: 10.1007/s12221-011-0886-6. http://dx.doi.org/10.1007/s12221-011-0886-6 [CrossRef] [Web of Science]

  • [24] Wang, S., Tan, Z., Li, Y., Sun, L., & Zhang, T. (2006). Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta, 441, 191–194. DOI: 10.1016/j.tca.2005.05.020. http://dx.doi.org/10.1016/j.tca.2005.05.020 [CrossRef]

  • [25] Wu, C. G., Degroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Liu, Y. J., Hirpo, W., & Kanatzidis, M. G. (1996). Redox intercalative polymerization of aniline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chemistry of Materials, 8, 1992–2204. DOI: 10.1021/cm9600236. [CrossRef]

  • [26] Zhang, F. M., Chang, J., & Eberhard, B. (2010). Dissolution of poly(vinyl alcohol)-modified carbon nanotubes in a buffer solution. New Carbon Materials, 25, 241–247. DOI: 10.1016/s1872-5805(09)60030-5. http://dx.doi.org/10.1016/S1872-5805(09)60030-5 [CrossRef] [Web of Science]

  • [27] Zuo, F., Angelopoules, M., MacDiarmid, A. G., & Epstein, A. J. (1989). AC conductivity of emeraldine polymer. Physical Review B, 39, 3570–3578. DOI: 10.1103/PhysRevB.39.3570. http://dx.doi.org/10.1103/PhysRevB.39.3570 [CrossRef]

Comments (0)

Please log in or register to comment.