Conducting polymer-silver composites : Chemical Papers

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Chemical Papers


IMPACT FACTOR increased in 2014: 1.468

SCImago Journal Rank (SJR) 2014: 0.368
Source Normalized Impact per Paper (SNIP) 2014: 0.684
Impact per Publication (IPP) 2014: 1.284

VolumeIssuePage

Issues

Conducting polymer-silver composites

1304Academy of Sciences of the Czech Republic

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Chemical Papers. Volume 67, Issue 8, Pages 814–848, ISSN (Online) 1336-9075, DOI: 10.2478/s11696-012-0304-6, May 2013

Publication History

Published Online:
2013-05-03

Abstract

Preparations of hybrid composites composed of two conducting components, a conducting polymer and silver, are reviewed. They are produced mainly by the oxidation of aniline or pyrrole with silver ions. In another approach, polyaniline or polypyrrole are used for the reduction of silver ions to metallic silver. Other synthetic approaches are also reviewed. Products of oxidation of aniline derivatives, including phenylenediamines, are considered. Morphology of both the conducting polymers and the silver in composites displays a rich variety. Conductivity of the composites seldom exceeds 1000 S cm−1 and seems to be controlled by percolation. Interfacial effects are also discussed. Potential applications of hybrid composites are outlined; they are likely to extend especially to conducting inks, printed electronics, noble-metal recovery, antimicrobial materials, catalysts, and sensors.

Keywords: polyaniline; polypyrrole; poly(o-phenylenediamine); poly(p-phenylenediamine); silver; silver nanoparticles; hybrid composites; conductivity

  • [1] Afzal, A. B., Akhtar, M. J., Nadeem, M., Ahmad, M., Hassan, M. M., Yasin, T., & Mehmood, M. (2009). Structural and electrical properties of polyaniline/silver nanocomposites. Journal of Physics D: Applied Physics, 42, 015411. DOI: 10.1088/0022-3727/42/1/015411. http://dx.doi.org/10.1088/0022-3727/42/1/015411 [CrossRef]

  • [2] Afzal, A. B., & Akhtar, M. J. (2010). Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. Journal of Inorganic and Organometallic Polymers and Materials, 20, 783–792. DOI: 10.1007/s10904-010-9405-2. http://dx.doi.org/10.1007/s10904-010-9405-2 [CrossRef]

  • [3] Afzal, A. B., & Akhtar, M. J. (2011). Investigation of ageing effects on the electrical properties of polayniline/silver nanocomposites. Chinese Physics B, 20, 058102. DOI: 10.1088/1674-1056/20/5/058102. http://dx.doi.org/10.1088/1674-1056/20/5/058102 [CrossRef]

  • [4] Afzal, A. B., & Akhtar, M. J. (2012). Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iranian Polymer Journal, 21, 489–496. DOI: 10.1007/s13726-012-0053-y. http://dx.doi.org/10.1007/s13726-012-0053-y [CrossRef]

  • [5] Alam, F., Ansari, S. A., Khan, W., Khan, M. E., & Naqvi, A. H. (2012). Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Functional Materials Letters, 5, 1250026. DOI: 10.1142/s1793604712500269. http://dx.doi.org/10.1142/S1793604712500269 [CrossRef]

  • [6] Alqudami, A., Annapoorni, S., Sen, P., & Rawat, R. S. (2007). The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synthetic Metals, 157, 53–59. DOI: 10.1016/j.synthmet.2006.12.006. http://dx.doi.org/10.1016/j.synthmet.2006.12.006 [CrossRef]

  • [7] Ansari, R., & Delavar, A. F. (2008). Sorption of silver ion from aqueous solutions using conducting electroactive polymers. Journal of the Iranian Chemical Society, 5, 657–668. DOI: 10.1007/bf03246147. http://dx.doi.org/10.1007/BF03246147 [CrossRef]

  • [8] Atmeh, M., & Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41, 1341–1347. DOI: 10.1007/s10800-011-0354-4. http://dx.doi.org/10.1007/s10800-011-0354-4 [CrossRef]

  • [9] Au, K. M., Lu, Z. H., Matcher, S. J., & Armes, S. P. (2011). Polypyrrole nanoparticles: A potential optical coherence tomography contrast agent for cancer imaging. Advanced Materials, 23, 5792–5795. DOI: 10.1002/adma.201103190. http://dx.doi.org/10.1002/adma.201103190 [CrossRef]

  • [10] Ayad, M. M., & Zaki, E. (2009). Synthesis and characterization of silver-polypyrrole film composite. Applied Surface Science, 256, 787–791. DOI: 10.1016/j.apsusc.2009.08.060. http://dx.doi.org/10.1016/j.apsusc.2009.08.060 [CrossRef]

  • [11] Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030. http://dx.doi.org/10.1016/j.synthmet.2009.09.030 [CrossRef]

  • [12] Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113. DOI: 10.1002/(SICI)1097-4555(199912)30:12〈1105::AID-JRS507〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-3 [CrossRef]

  • [13] Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapour sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 94–98. DOI: 10.1016/j.colsurfa.2011.02. 002. http://dx.doi.org/10.1016/j.colsurfa.2011.02.002 [CrossRef]

  • [14] Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443, 63–66. DOI: 10.1038/nature05118. http://dx.doi.org/10.1038/nature05118 [CrossRef]

  • [15] Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 30, 1668–1677. DOI: 10.1002/pc.20740. http://dx.doi.org/10.1002/pc.20740 [CrossRef]

  • [16] Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f. http://dx.doi.org/10.1021/jp067370f [CrossRef]

  • [17] Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.045 [CrossRef]

  • [18] Blinova, N. V., Stejskal, J., Trchová, M., Sapurina, I., & Ćirić-Marjanović, G. (2009). The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 50, 50–56. DOI: 10.1016/j.polymer.2008.10.040. http://dx.doi.org/10.1016/j.polymer.2008.10.040 [CrossRef]

  • [19] Blinova, N. V., Bober, P., Hromádková, J., Trchová, M., Stejskal, J., & Prokeš, J. (2010). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 59, 437–446. DOI: 10.1002/pi.2718. http://dx.doi.org/10.1002/pi.2718 [CrossRef]

  • [20] Bober, P., Stejskal, J., Trchová, M., Hromádková, J., & Prokeš, J. (2010a). Polyaniline-coated silver nanowires. Reactive & Functional Polymers, 70, 656–662. DOI: 10.1016/j.reactfunctpolym.2010.05.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.05.009 [CrossRef]

  • [21] Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010b). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j. http://dx.doi.org/10.1021/ma101474j [CrossRef]

  • [22] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI: 10.1016/j.polymer.2011.10.025. http://dx.doi.org/10.1016/j.polymer.2011.10.025 [CrossRef]

  • [23] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011b). The preparation of conducting polyaniline-silver and poly (p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 15, 2361–2368. DOI: 10.1007/s10008-011-1414-8. http://dx.doi.org/10.1007/s10008-011-1414-8 [CrossRef]

  • [24] Bober, P., Trchová, M., Prokeš, J., Varga, M., & Stejskal, J. (2011c). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 56, 3580–3585. DOI: 10.1016/j.electacta.2010.08.041. http://dx.doi.org/10.1016/j.electacta.2010.08.041 [CrossRef]

  • [25] Borthakur, L. J., Sharma, S., & Dolui, S. K. (2011). Studies on Ag/polypyrrole composite deposited on the surface of styrene-methyl acrylate copolymer microparticles and their electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 22, 949–958. DOI: 10.1007/s10854-010-0242-4. http://dx.doi.org/10.1007/s10854-010-0242-4 [CrossRef]

  • [26] Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025. http://dx.doi.org/10.1016/j.synthmet.2009.04.025 [CrossRef]

  • [27] Cao, Y., Smith, P., & Heeger, A. J. (1993). Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-c. http://dx.doi.org/10.1016/0379-6779(93)90468-C [CrossRef]

  • [28] Chang, S. J., Chen, K., Hua, Q., Ma, Y. S., & Huang, W. X. (2011). Evidence for the growth mechanism of silver nanocubes and nanowires. Journal of Physical Chemistry C, 115, 7979–7986. DOI: 10.1021/jp2010088. http://dx.doi.org/10.1021/jp2010088 [CrossRef]

  • [29] Chang, G.H., Luo, Y. L., Lu, W. B., Qin, X.Y., Asiri, A.M., Al-Youbi, A. O., & Sun, X. P. (2012a). Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2, 800–806. DOI: 10.1039/c2cy00454b. http://dx.doi.org/10.1039/c2cy00454b [CrossRef]

  • [30] Chang, M. C., Kim, T. J., Park, H. W., Kang, M. J., Reichmanis, E., & Yoon, H. S. (2012b). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces, 4, 4357–4365. DOI: 10.1021/am3009967. http://dx.doi.org/10.1021/am3009967 [CrossRef]

  • [31] Chao, D. M., Cui, L., Zhang, J. F., Liu, X. C., Li, Y. X., Zhang, W. J., & Wang, C. (2009). Preparation of oligoaniline derivative/polyvinylpyrrolidone nanofibers containing silver nanoparticles. Synthetic Metals, 159, 537–540. DOI: 10.1016/j.synthmet.2008.11.013. http://dx.doi.org/10.1016/j.synthmet.2008.11.013 [CrossRef]

  • [32] Chatterjee, S., Garai, A., & Nandi, A. K. (2011). Mechanism of polypyrrole and silver nanorod formation in lauric acidcetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 161, 62–71. DOI: 10.1016/j.synthmet.2010.10.035. http://dx.doi.org/10.1016/j.synthmet.2010.10.035 [CrossRef]

  • [33] Chen, A. H., Wang, H. Q., & Li, X. Y. (2005a). One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications, 2005, 1863–1864. DOI: 10.1039/b417744d. http://dx.doi.org/10.1039/b417744d [CrossRef]

  • [34] Chen, A. H., Kamata, K., Nakagawa, M., Iyoda, T., Wang, H. Q., & Li, X. Y. (2005b). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109, 18283–18288. DOI: 10.1021/jp053247x. http://dx.doi.org/10.1021/jp053247x [CrossRef]

  • [35] Chen, A. H., Xie, H. X., Wang, H. Q., Li, H. Y., & Li, X. Y. (2006). Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals, 156, 346–350. DOI: 10.1016/j.synthmet.2005.12.017. http://dx.doi.org/10.1016/j.synthmet.2005.12.017 [CrossRef]

  • [36] Chen, R., Zhao, S. Z., Han, G. Y., & Dong, J. H. (2008). Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Materials Letters, 62, 4031–4034. DOI: 10.1016/j.matlet.2008.05.054. http://dx.doi.org/10.1016/j.matlet.2008.05.054 [CrossRef]

  • [37] Chen, H. M., & Liu, R. S. (2011a). Architecture of metallic nanostructures: Synthesis strategy and specific applications. Journal of Physical Chemistry C, 115, 3513–3527. DOI: 10.1021/jp108403r. http://dx.doi.org/10.1021/jp108403r [CrossRef]

  • [38] Chen, F., & Liu, P. (2011b). Conducting polyaniline nanoparticles and their dispersion for waterborn corrosion protection coating. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m. http://dx.doi.org/10.1021/am200488m [CrossRef]

  • [39] Cheng, D. M., Xia, H. B., & Cahn, H. S. O. (2006). Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 17, 1661–1667. DOI: 10.1088/0957-4484/17/6/021. http://dx.doi.org/10.1088/0957-4484/17/6/021 [CrossRef]

  • [40] Cheng, Q. L., Pavlinek, V., He, Y., Yan, Y. F., Li, C. Z., & Saha, P. (2011). Template-free synthesis of hollow poly(oanisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 20, 065014. DOI: 10.1088/0964-1726/20/6/065014. http://dx.doi.org/10.1088/0964-1726/20/6/065014 [CrossRef]

  • [41] Chi, K. W., Song, Y. H., Cha, E. H., Jin, S. H., & Lee, C. W. (2010). Reversible colorimetric changes of a nanoporous polyaniline conducting particles system for sensing metal ions, Synthetic Metals, 160, 946–949. DOI: 10.1016/j.synthmet.2010.02.005. http://dx.doi.org/10.1016/j.synthmet.2010.02.005 [CrossRef]

  • [42] Choi, M. J., & Jang, J. S. (2008). Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. Journal of Colloid and Interface Science, 325, 287–289. DOI: 10.1016/j.jcis.2008.05.047. http://dx.doi.org/10.1016/j.jcis.2008.05.047 [CrossRef]

  • [43] Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325. DOI: 10.1016/j.snb.2009.01.019. http://dx.doi.org/10.1016/j.snb.2009.01.019 [CrossRef]

  • [44] Choudhury, A., Kar, P., Mukherjee, M., & Adhikari, B. (2009). Polyaniline/silver nanocomposite based acetone vapour sensor. Sensor Letters, 7, 592–598. DOI: 10.1166/sl.2009.1115. http://dx.doi.org/10.1166/sl.2009.1115 [CrossRef]

  • [45] Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008). Chemical oxidative polymerization of aminodiphenylamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e. http://dx.doi.org/10.1021/jp710963e [CrossRef]

  • [46] Ćirić-Marjanović, G., Marjanović, B., Bober, P., Rozlívková, Z., Stejskal, J., Trchová, M., & Prokeš, J. (2011). The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3387–3403. DOI: 10.1002/pola.24775. http://dx.doi.org/10.1002/pola.24775 [CrossRef]

  • [47] Correa, C. M., Faez, R., Bizeto, M. A., & Camilo, F. F. (2012). One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Advances, 2, 3088–3093. DOI: 10.1039/c2ra00992g. http://dx.doi.org/10.1039/c2ra00992g [CrossRef]

  • [48] Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03. 026. http://dx.doi.org/10.1016/j.bios.2009.03.026 [CrossRef]

  • [49] Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., & Petridis, D. (2007). Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer, 48, 2007–2013. DOI: 10.1016/j.polymer.2007.01.058. http://dx.doi.org/10.1016/j.polymer.2007.01.058 [CrossRef]

  • [50] Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z. http://dx.doi.org/10.1021/jp063269z [CrossRef]

  • [51] Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m. http://dx.doi.org/10.1021/la063229m [CrossRef]

  • [52] de Azevedo, W. M., de Barros, R. A., & da Silva, E. F. (2008a). Conductive polymer preparation under extreme or non-classical conditions. Journal of Materials Science, 43, 1400–1405. DOI: 10.1007/s10853-007-2278-2. http://dx.doi.org/10.1007/s10853-007-2278-2 [CrossRef]

  • [53] de Azevedo, W. M., de Mattos, I. L., Navarro, M., & da Silva, E. F., Jr. (2008b). Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite. Applied Surface Science, 255, 770–774. DOI: 10.1016/j.apsusc.2008.07.039. http://dx.doi.org/10.1016/j.apsusc.2008.07.039 [CrossRef]

  • [54] de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014. http://dx.doi.org/10.1016/j.synthmet.2005.05.014 [CrossRef]

  • [55] de Barros, R. A., & de Azevedo, W. M. (2008). Polyaniline/silver nanocomposite preparation under extreme or nonclassical conditions. Synthetic Metals, 158, 922–926. DOI: 10.1016/j.synthmet.2008.06.021. http://dx.doi.org/10.1016/j.synthmet.2008.06.021 [CrossRef]

  • [56] de Barros, R. A., Areias, M. C. C., & de Azevedo, W. M. (2010). Conducting polymer photopolymerization mechanism: The role of nitrate anions (NO 3−). Synthetic Metals, 160, 61–64. DOI: 10.1016/j.synthmet.2009.09.033. http://dx.doi.org/10.1016/j.synthmet.2009.09.033 [CrossRef]

  • [57] de Barros, R. A., & de Azevedo, W. M. (2010). Solvent coassisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synthetic Metals, 160, 1387–1391. DOI: 10.1016/j.synthmet.2010.04.006. http://dx.doi.org/10.1016/j.synthmet.2010.04.006 [CrossRef]

  • [58] Della Pina, C., Falletta, E., & Rossi, M. (2011). Conductive materials by metal catalyzed polymerization. Catalysis Today, 160, 11–27. DOI: 10.1016/j.cattod.2010.05.023. http://dx.doi.org/10.1016/j.cattod.2010.05.023 [CrossRef]

  • [59] D’Eramo, F., Silber, J. J., Arévalo, A. H., & Sereno, L. E. (2000). Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. Journal of Electroanalytical Chemistry, 494, 60–68. DOI: 10.1016/s0022-0728(00)00329-6. http://dx.doi.org/10.1016/S0022-0728(00)00329-6 [CrossRef]

  • [60] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.112 [CrossRef]

  • [61] Dispenza, C., Sabatino, M. A., Chmielewska, D., LoPresti, C., & Battaglia, G. (2012). Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. Reactive & Functional Polymers, 72, 185–197. DOI: 10.1016/j.reactfunctpolym.2012.01.001. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.01.001 [CrossRef]

  • [62] Drury, A., Chaure, S., Kröll, M., Nicolosi, V., Chaure, N., & Blau, W. J. (2007). Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chemistry of Materials, 19, 4252–4258. DOI: 10.1021/cm071102s. http://dx.doi.org/10.1021/cm071102s [CrossRef]

  • [63] Du, J. M., Liu, Z. M., Han, B. X., Li, Z. H., Zhang, J. L., & Huang, Y. (2005). One-pot synthesis of macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 84, 254–260. DOI: 10.1016/j.micromeso.2005.05.036. http://dx.doi.org/10.1016/j.micromeso.2005.05.036 [CrossRef]

  • [64] Efros, A. L., & Shklovski, B. I. (1976). Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Physica Status Solidi B, 76, 475–485. DOI: 10.1002/pssb.2220760205. http://dx.doi.org/10.1002/pssb.2220760205 [CrossRef]

  • [65] Feng, X. M. (2010). Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method. Chinese Journal of Chemistry, 28, 1359–1362. DOI: 10.1002/cjoc.201090232. http://dx.doi.org/10.1002/cjoc.201090232 [CrossRef]

  • [66] Feng, X. M., Huang, H. P., Ye, Q. Q., Zhu, J. J., & Hou, W. H. (2007a). Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles. Journal of Physical Chemistry C, 111, 8463–8468. DOI: 10.1021/jp071140z. http://dx.doi.org/10.1021/jp071140z [CrossRef]

  • [67] Feng, X. M., Sun, Z. Z., Hou, W. H., & Zhu, J. J. (2007b). Synthesis of functional polypyrrole/Prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 18, 195603. DOI: 10.1088/0957-4484/18/19/195603. http://dx.doi.org/10.1088/0957-4484/18/19/195603 [CrossRef]

  • [68] Feng, X. M., Huang, H. P., Xu, L., Zhu, J. J., & Hou, W. H. (2008). Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan. Journal of Nanoscience and Nanotechnology, 8, 443–447. DOI: 10.1166/jnn.2008.028. http://dx.doi.org/10.1166/jnn.2008.054 [CrossRef]

  • [69] Firoz Babu, K., Dhandapani, P., Maruthamuthu, S., & Anbu Kulandainathan, M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90, 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030. http://dx.doi.org/10.1016/j.carbpol.2012.07.030 [CrossRef]

  • [70] Fujii, S., Nishimura, Y., Aichi, A., Matsuzawa, S., Nakamura, Y., Akamatsu, K., & Nawafune, H. (2010). Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 160, 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024. http://dx.doi.org/10.1016/j.synthmet.2010.04.024 [CrossRef]

  • [71] Fuke, M. V., Vijayan, A., Kanitkar, P., & Aiyer, R. C. (2009a). Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sensors Journal, 9, 648–653. DOI: 10.1109/jsen.2009.2020662. http://dx.doi.org/10.1109/JSEN.2009.2020662 [CrossRef]

  • [72] Fuke, M. V., Vijayan, A., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2009b). Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. Journal of Materials Science: Materials in Electronics, 20, 695–703. DOI: 10.1007/s10854-008-9787-x. http://dx.doi.org/10.1007/s10854-008-9787-x [CrossRef]

  • [73] Fuke, M. V., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2010). Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta, 81, 320–326. DOI: 10.1016/j.talanta.2009.12.003. http://dx.doi.org/10.1016/j.talanta.2009.12.003 [CrossRef]

  • [74] Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity of neurotransmitter dopamine. Journal of Physical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d. http://dx.doi.org/10.1021/jp904788d [CrossRef]

  • [75] Gao, L., Lv, S., & Xing, S. X. (2012). Facile route to achieve silver@ polyaniline nanofibers. Synthetic Metals, 162, 948–952. DOI: 10.1016/j.synthmet.2012.04.026. http://dx.doi.org/10.1016/j.synthmet.2012.04.026 [CrossRef]

  • [76] Garai, A., Chatterjee, S., & Nandi, A. K. (2010). Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acid-doped thermoreversible polyaniline gel. Polymer Engineering & Science, 50, 446–454. DOI: 10.1002/pen.21545. http://dx.doi.org/10.1002/pen.21545 [CrossRef]

  • [77] Ghorbani, M., Lashkenari, M. S., & Eisazadeh, H. (2011). Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Performance Polymers, 23, 513–517. DOI: 10.1177/0954008311419049. http://dx.doi.org/10.1177/0954008311419049 [CrossRef]

  • [78] Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum of antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018. http://dx.doi.org/10.1016/j.actbio.2011.07.018 [CrossRef]

  • [79] Gniadek, M., Bak, E., Stojek, Z., & Donten, M. (2010a). Metalion driven synthesis of polyaniline composite doped with metallic nanocrystals at the boudary of two immiscible liquids. Journal of Solid State Electrochemistry, 14, 1303–1310. DOI: 10.1007/s10008-009-0939-6. http://dx.doi.org/10.1007/s10008-009-0939-6 [CrossRef]

  • [80] Gniadek, M., Donten, M., & Stojek Z. (2010b). Electroless formation of conductive polymer-metal nanostructured composites at boundry of two immiscible solvents. Morphology and properties. Electrochimica Acta, 55, 7737–7744. DOI: 10.1016/j.electacta.2009.10.064. http://dx.doi.org/10.1016/j.electacta.2009.10.064 [CrossRef]

  • [81] Grinou, A., Bak, H. S., Yun, Y. S., & Jin, H. J. (2012). Polyaniline/silver nanoparticle-doped multiwalled carbon nanotube composites. Journal of Dispersion Science and Technology, 33, 750–755. DOI: 10.1080/01932691.2011.567862. http://dx.doi.org/10.1080/01932691.2011.567862 [CrossRef]

  • [82] Guo, S. J., & Wang, E. K. (2008). One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 673–678. DOI: 10.1016/j.colsurfa.2007.12.002. http://dx.doi.org/10.1016/j.colsurfa.2007.12.002 [CrossRef]

  • [83] Gupta, K., Jana, P. C., & Meikap, A. K. (2010). Optical and electrical properties of polyaniline-silver nanocomposite. Synthetic Metals, 160, 1566–1573. DOI: 10.1016/j.synthmet. 2010.05.026. http://dx.doi.org/10.1016/j.synthmet.2010.05.026 [CrossRef]

  • [84] Han, J., Fang, P., Jiang, W. J., Li, L., & Guo, R. (2012). Ag-Nanoparticle-loaded mesoporous silica: Spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir, 28, 4768–4775. DOI: 10.1021/la204503b. http://dx.doi.org/10.1021/la204503b [CrossRef]

  • [85] He, J. J., Han, X. J., Yan, J., Kang, L. L., Zhang, B., Du, Y. C., Dong, C. K., Wang, H. L., & Xu, P. (2012a). Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 14, 4952–4954. DOI: 10.1039/c2ce25257k. http://dx.doi.org/10.1039/c2ce25257k [CrossRef]

  • [86] He, Z. W., Lü, Q. F., & Zhang, J. Y. (2012b). Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Applied Materials & Interfaces, 4, 369–374. DOI: 10.1021/am201447s. http://dx.doi.org/10.1021/am201447s [CrossRef]

  • [87] Hosseini, M., & Momeni, M. M. (2010). Silver nanoparticles dispersed in polyaniline matrix coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. Journal of Materials Science, 45, 3304–3310. DOI: 10.1007/s10853-010-4347-1. http://dx.doi.org/10.1007/s10853-010-4347-1 [CrossRef]

  • [88] Huang, M. R., Li, X. G., & Li, S. X. (2005). The synthesis of polydiaminonaphthalene and its highly reactive adsorption for heavy metal ions. Progress in Chemistry, 17, 299–309.

  • [89] Huang, L. M., Huang, G. C., & Wen, T. C. (2006a). Role of anions in the polymerization of 2,5-dimethylaniline in the presence of poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 6624–6632. DOI: 10.1002/pola.21745. http://dx.doi.org/10.1002/pola.21745 [CrossRef]

  • [90] Huang, L. M., Tsai, C. C., Wen, T. C., & Gopalan, A. (2006b). Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 3843–3852. DOI: 10.1002/pola.21479. http://dx.doi.org/10.1002/pola.21479 [CrossRef]

  • [91] Huang, L. M., & Wen, T. C. (2007). One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Materials Science and Engineering A, 445–446, 7–13. DOI: 10.1016/j.msea.2006.05.121. http://dx.doi.org/10.1016/j.msea.2006.05.121 [CrossRef]

  • [92] Huang, L. M., Liao, W. H., Ling, H. C., & Wen, T. C. (2009). Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics, 116, 474–478. DOI: 10.1016/j.matchemphys.2009.04.035. http://dx.doi.org/10.1016/j.matchemphys.2009.04.035 [CrossRef]

  • [93] Huang, Z. H., Shi, L., Zhu, Q. R., Zou, J. T., & Chen, T. (2010). Fabrication of polyaniline/silver nanocomposite under γ-ray irradiation. Chinese Journal of Chemical Physics, 23, 701–706. DOI: 10.1088/1674-0068/23/06/701-706. http://dx.doi.org/10.1088/1674-0068/23/06/701-706 [CrossRef]

  • [94] Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012a). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024. http://dx.doi.org/10.1016/j.synthmet.2012.02.024 [CrossRef]

  • [95] Humpoliček, P., Kašpárková, Z., & Ševčíkověká, P. (2012b). Proliferace buněk na vodivém polymeru, polyanilinu. Chemické Listy, 106, 380–383. (in Czech)

  • [96] Ihalainen, P., Määttänen, A., Järnström, J., Tobjörk, D., Österbacka, R., & Peltonen, J. (2012). Influence of surface properties of coated papers on printed electronics. Industrial & Engineering Chemistry Research, 51, 6025–6036. DOI: 10.1021/ie202807v. http://dx.doi.org/10.1021/ie202807v [CrossRef]

  • [97] Ijeri, V. S., Nair, J. R., Gerbaldi, C., Gonnelli, R. S., Bodoardo, S., & Bongiovanni, R. M. (2010). An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 6, 4666–4668. DOI: 10.1039/c0sm00530d. http://dx.doi.org/10.1039/c0sm00530d [CrossRef]

  • [98] Ivanov, S., & Tsakova, V. (2005). Electroless versus electrodriven deposition of silver crystals in polyaniline. Role of silver anion complexes. Electrochimica Acta, 50, 5616–5623. DOI: 10.1016/j.electacta.2005.03.040. http://dx.doi.org/10.1016/j.electacta.2005.03.040 [CrossRef]

  • [99] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010a). Effect of Ag+ on the morphologies and properties of polyaniline. Rare Metal Materials and Engineering, 39(Supplement 1), 538–543.

  • [100] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010b). One-step synthesis of polyaniline nanofibers decorated with silver. Journal of Applied Polymer Science, 115, 26–31. DOI: 10.1002/app.30373. http://dx.doi.org/10.1002/app.30373 [CrossRef]

  • [101] Jia, Q. M., Shan, S. Y., Jiang, L. H., Wang, Y. M., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257. http://dx.doi.org/10.1002/app.36257 [CrossRef]

  • [102] Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e. http://dx.doi.org/10.1021/jp909093e [CrossRef]

  • [103] Jing, S. G., Xing, S. X., Yu, L. X., Wu, Y., & Zhao, C. (2007a). Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797. DOI: 10.1016/j.matlet.2006.10.032. http://dx.doi.org/10.1016/j.matlet.2006.10.032 [CrossRef]

  • [104] Jing, S. G., Xing, S. X., Yu, L. X., & Zhao, C. (2007b). Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 4528–4530. DOI: 10.1016/j.matlet.2007.02.045. http://dx.doi.org/10.1016/j.matlet.2007.02.045 [CrossRef]

  • [105] Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518. DOI: 10.1063/1.373688. http://dx.doi.org/10.1063/1.373688 [CrossRef]

  • [106] Jung, Y. J., Govindaiah, P., Choi, S. W., Cheong, I. W., & Kim, J. H. (2011). Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: Effect of polymeric stabilizers. Synthetic Metals, 161, 1991–1995. DOI: 10.1016/j.synthmet.2011.07.009. http://dx.doi.org/10.1016/j.synthmet.2011.07.009 [CrossRef]

  • [107] Kabir, L., Mandal, A. R., & Mandal, S. K. (2008). Humiditysensing properties of conducting polypyrrole-silver nanocomposites. Journal of Experimental Nanoscience, 3, 297–305. DOI: 10.1080/17458080802512494. http://dx.doi.org/10.1080/17458080802512494 [CrossRef]

  • [108] Kang, Y. O., Choi, S. H., Gopalan, A., Lee, K. P., Kang, H. D., & Song, Y. S. (2006). Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. Journal of Non-Crystalline Solids, 352, 463–468. DOI: 10.1016/j.jnoncrysol.2006.01.043. http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.043 [CrossRef]

  • [109] Kanwal, F., Ishaq, S., & Jamil, T. (2009). Synthesis and characterization of silver hexacyanoferrate (II)/polyaniline composites. Journal of the Chemical Society of Pakistan, 31, 907–910.

  • [110] Kar, P., Pradhan, N. C., & Adhikari, B. (2011). Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 22, 1060–1066. DOI: 10.1002/pat.1622. http://dx.doi.org/10.1002/pat.1622 [CrossRef]

  • [111] Karim, M. R., Lim, K. T., Lee, C. J., Bhuiyan, M. T. I., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of coreshell silver-polyaniline nanocomposites by gamma radiolysis method. Journal of Polymer Science, Part A: Polymer Chemistry, 45, 5741–5747. DOI: 10.1002/pola.22323. http://dx.doi.org/10.1002/pola.22323 [CrossRef]

  • [112] Karim, M. R., Yeum, J. H., Lee, M. Y., Lee, M. S., & Lim, K. T. (2009). UV-curing synthesis of sulfonated polyanilinesilver nanocomposites by an in situ reduction method. Polymers for Advanced Technologies, 20, 639–644. DOI: 10.1002/pat.1317. http://dx.doi.org/10.1002/pat.1317 [CrossRef]

  • [113] Kate, K. H., Damkale, S. R., Khanna, P. K., & Jain, G. H. (2011). Nano-silver mediated polymerization of pyrrole: Syn thesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology, 11, 7863–7869. DOI: 10.1166/jnn.2011.4708. http://dx.doi.org/10.1166/jnn.2011.4708 [CrossRef]

  • [114] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677. DOI: 10.1021/jp026731y. http://dx.doi.org/10.1021/jp026731y [CrossRef]

  • [115] Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 35, 5571–5577. DOI: 10.1002/ejic.200700608. http://dx.doi.org/10.1002/ejic.200700608 [CrossRef]

  • [116] Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92, 214–219. DOI: 10.1016/j.matchemphys.2005.01.011. http://dx.doi.org/10.1016/j.matchemphys.2005.01.011 [CrossRef]

  • [117] Kim, K. S., Kim, I. J., & Park, S. J. (2010a). Influence of Ag doped graphene on electrochemical behaviours and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals, 160, 2355–2360. DOI: 10.1016/j.synthmet.2010.09.011. http://dx.doi.org/10.1016/j.synthmet.2010.09.011 [CrossRef]

  • [118] Kim, H. J., Park, S. H., & Park, H. J. (2010b). Synthesis of a new electrically conducting nanosized Ag-polyaniline-silica complex using γ-radiolysis and its biosensing applications. Radiation Physics and Chemistry, 79, 894–899. DOI: 10.1016/j.radphyschem.2010.02.005. http://dx.doi.org/10.1016/j.radphyschem.2010.02.005 [CrossRef]

  • [119] Kim, K. S., & Park, S. J. (2011). Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. Journal of Solid State Electrochemistry, 184, 2724–2730. DOI: 10.1016/j.jssc.2011.08.010. http://dx.doi.org/10.1016/j.jssc.2011.08.010 [CrossRef]

  • [120] Kim, H. J., Park, S. H., & Park, H. J. (2011). Hydrogen peroxide sensor based on electrically conducting nanosized Agpolyaniline-silica complex. Sensor Letters, 9, 59–63. DOI: 10.1166/sl.2011.1419. http://dx.doi.org/10.1166/sl.2011.1419 [CrossRef]

  • [121] Kim, H. J., Choi, S. H., & Park, H. J. (2012). Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties. Radiation Physics and Chemistry, 81, 1612–1620. DOI: 10.1016/j.radphyschem.2012.04.013. http://dx.doi.org/10.1016/j.radphyschem.2012.04.013 [CrossRef]

  • [122] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J. Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.059 [CrossRef]

  • [123] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008a). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes contaning nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.036 [CrossRef]

  • [124] Konyushenko, E. N., Stejskal, J., Trchová, M., Blinova, N. V., & Holler, P. (2008b). Polymerization of aniline in ice. Synthetic Metals, 158, 927–933. DOI: 10.1016/j.synthmet.2008.06.015. http://dx.doi.org/10.1016/j.synthmet.2008.06.015 [CrossRef]

  • [125] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z [CrossRef]

  • [126] Kovałchuk, E. P., Ogenko, V. M., Reshetnyak, O. V., Pereviznyk, O. B., Davydenko, N., & Marchuk, I. E. (2010). Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 55, 5154–5162. DOI: 10.1016/j. electacta.2010.04.023. http://dx.doi.org/10.1016/j.electacta.2010.04.023 [CrossRef]

  • [127] Krishna, J. B. M., Abhaya, S., Amarendra, G., Sundar, C. S., Saha, A., & Ghosh, B. (2008). Positron beam studies on polyaniline and Ag-coated polyaniline. Applied Surface Science, 255, 248–250. DOI:10.1016/j.apsusc.2008.05.189. http://dx.doi.org/10.1016/j.apsusc.2008.05.189 [CrossRef]

  • [128] Křivka, I., Prokeš, J., Tobolková, E., & Stejskal, J. (1999). Application of percolation concepts to electrical conductivity of polyaniline-inorganic salt composites. Journal of Materials Chemistry, 9, 2425–2428. DOI: 10.1039/a904687i. http://dx.doi.org/10.1039/a904687i [CrossRef]

  • [129] Křížko, E. N., Trchová, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079. [CrossRef]

  • [130] Krutyakov, Y. A., Kudrinsky, A. A., Olenin, A. Y., & Lisichkin, G. V. (2010). Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Applied Surface Science, 256, 7037–7042. DOI: 10.1016/j.apsusc.2010. 05.020. http://dx.doi.org/10.1016/j.apsusc.2010.05.020 [CrossRef]

  • [131] Lee, C. Y., Song, H. G., Jang, K. S., Oh, E. J., Epstein, A. J., & Joo, J. (1999). Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synthetic Metals, 102, 1346–1349. DOI: 10.1016/s0379-6779(98)00234-3. http://dx.doi.org/10.1016/S0379-6779(98)00234-3 [CrossRef]

  • [132] Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S., & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13, 577–583. DOI: 10.1002/pat227. http://dx.doi.org/10.1002/pat.227 [CrossRef]

  • [133] Lee, H. T., & Liu, Y. C. (2005). Catalytic electrooxidation pathway for the polymerization of polypyrrole in the presence of ultrafine silver nanoparticles. Polymer, 46, 10727–10732. DOI: 10.1016/j.polymer.2005.09.031. http://dx.doi.org/10.1016/j.polymer.2005.09.031 [CrossRef]

  • [134] Lee, K., Cho, S., Sung, H. P., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature04705 [CrossRef]

  • [135] Lee, C. W., Jin, S. H., Yoon, K. S., Jeong, H. M., & Chi, K. W. (2009). Efficient oxidation of hydroquinone and alcohols by tailor-made solid polyaniline catalyst. Tetrahedron Letters, 50, 559–561. DOI: 10.1016/j.tetlet.2008.11.062. http://dx.doi.org/10.1016/j.tetlet.2008.11.062 [CrossRef]

  • [136] Lee, Y. J., Kim, E. H., Kim, K. J., Lee, B. H., & Choe, S. J. (2012). Polyaniline effect on the conductivity of the PMMA/Ag hybrid composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 195–202. DOI: 10.1016/j.colsurfa.2011.12.071. http://dx.doi.org/10.1016/j.colsurfa.2011.12.071 [CrossRef]

  • [137] Leyva, M. E., Garcia, F. G., Alencar de Queiroz, A. A., & Soares, D. A. W. (2011). Electrical properties of the DGEBA/PANI-Ag composites. Journal of Materials Science: Materials in Electronics, 22, 376–383. DOI: 10.1007/s10854-010-0146-3. http://dx.doi.org/10.1007/s10854-010-0146-3 [CrossRef]

  • [138] Li, X. G., Liu, R., & Huang, M. R. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17, 5411–5419. DOI: 10.1021/cm050813s. http://dx.doi.org/10.1021/cm050813s [CrossRef]

  • [139] Li, W. G., Jia, Q. X., & Wang, H. L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.032 [CrossRef]

  • [140] Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745: DOI: 10.1002/marc.200600810. http://dx.doi.org/10.1002/marc.200600810 [CrossRef]

  • [141] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. Y. (2009a). Polyaniline/Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535v [CrossRef]

  • [142] Li, X., Gao, Y., Liu, F. H., Gong, J., & Qu, L. Y. (2009b). Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Materials Letters, 63, 467–469. DOI: 10.1016/j.matlet.2008.11.027. http://dx.doi.org/10.1016/j.matlet.2008.11.027 [CrossRef]

  • [143] Li, X. G., Ma, X. L., Sun, J., & Huang, M. R. (2009c). Powerful reactive sorption of silver(I) and mercury(II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25, 1675–1684. DOI: 10.1021/la802410p. http://dx.doi.org/10.1021/la802410p [CrossRef]

  • [144] Li, B., Xu, Y. L., Chen, J., Chen, G. R., Zhao, C. J., Qian, X. Z., & Wang, M. (2009d). Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 256, 235–238. DOI: 10.1016/j.apsusc.2009.08.006. http://dx.doi.org/10.1016/j.apsusc.2009.08.006 [CrossRef]

  • [145] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000506. http://dx.doi.org/10.1002/chem.201000506 [CrossRef]

  • [146] Li, Z. H., & Wang, Y. W. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31, 1662–1668. DOI: 10.1002/pc.20956. http://dx.doi.org/10.1002/pc.20956 [CrossRef]

  • [147] Li, B. T., Tang, L. M., Chen, K., Xia, Y., & Jin, X. (2011). Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires. Chinese Chemical Letters, 22, 123–126. DOI: 10.1016/j.cclet.2010.06.034. http://dx.doi.org/10.1016/j.cclet.2010.06.034 [CrossRef]

  • [148] Li, Z. F., Blum, F. D., Bertino, M. F., & Kim, C. S. (2012a). Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors. Sensors and Actuators B: Chemical, 161, 390–395. DOI: 10.1016/j.sab.2011.10.049. http://dx.doi.org/10.1016/j.snb.2011.10.049 [CrossRef]

  • [149] Li, Z. H., Lin, W., Lu, J. T., Laven, J., & Foyet, A. (2012b). Reversed micelle synthesis of Ag/polyaniline nanocomposites via an in situ ultraviolet photo-redox mechanism. Polymer Composites, 33, 451–458. DOI: 10.1002/pc.21211. http://dx.doi.org/10.1002/pc.21211 [CrossRef]

  • [150] Liang, X. X., Sun, M. X., Li, L. C., Qiao, R., Chen, K., Xiao, Q. S., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h. http://dx.doi.org/10.1039/c2dt11823h [CrossRef]

  • [151] Liao, F., Wang, Z. F., & Hu, X. Q. (2011a). Shape-controllable synthesis of dendritic silver nanostructures at room temperature. Colloid Journal, 73, 504–508. DOI: 10.1134/s1061933 x11040053. http://dx.doi.org/10.1134/S1061933X11040053 [CrossRef]

  • [152] Liao, F., Wang, Z. F., & Hu, X. Q. (2011b). Growth of different morphologies of silver submicrostructures: The effect of concentrations and pH. Ionics, 17, 177–182. DOI: 10.1007/s11581-010-0499-x. http://dx.doi.org/10.1007/s11581-010-0499-x [CrossRef]

  • [153] Liao, F., Wang, Z. F., & Sun, X. P. (2012). A novel method self-assemle silver nanowires at room temperature. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 325–328. DOI: 10.1080/15533174.2011.610767. http://dx.doi.org/10.1080/15533174.2011.610767 [CrossRef]

  • [154] Lim, C. W., Song, K., & Kim, S. H. (2012). Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. Journal of Industrial and Engineering Chemistry, 18, 24–28. DOI: 10.1016/j.jiec.2011.11.115. http://dx.doi.org/10.1016/j.jiec.2011.11.115 [CrossRef]

  • [155] Liu, Z. C., Su, Y., & Varahramyan, K. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279. DOI: 10.1016/j.tsf.2004.11.077. http://dx.doi.org/10.1016/j.tsf.2004.11.077 [CrossRef]

  • [156] Luo, C. H., Peng, H., Zhang, L. J., Lu, G. L., Wang, Y. T., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350m [CrossRef]

  • [157] Lyutov, V., & Tsakova, V. (2011). Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 15, 2553–2561. DOI: 10.1007/s10008-011-1451-3. http://dx.doi.org/10.1007/s10008-011-1451-3 [CrossRef]

  • [158] Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir, 27, 4979–4985. DOI: 10.1021/la103644j. http://dx.doi.org/10.1021/la103644j [CrossRef]

  • [159] Mahmoudian, M. R., Alias, Y., Basirun, W. J., & Ebadi, M. (2012). Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 72, 46–52. DOI: 10.1016/j.electacta.2012.03.144. http://dx.doi.org/10.1016/j.electacta.2012.03.144 [CrossRef]

  • [160] Mai, L. Q., Xu, X., Han, C. H., Luo, Y. Z., Xu, L., Wu, Y. A., & Zhao, Y. L. (2011). Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Letters, 11, 4992–4996. DOI: 10.1021/nl202943b. http://dx.doi.org/10.1021/nl202943b [CrossRef]

  • [161] Manesh, K. M., Gopalan, A. I., Lee, K. P., & Shanmugasundaram, K. (2010). Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergetic influence for catalysis. Catalysis Communications, 11, 913–918. DOI: 10.1016/j.catcom.2010.03.013. http://dx.doi.org/10.1016/j.catcom.2010.03.013 [CrossRef]

  • [162] Manivel, A., & Anandan, S. (2011). Silver nanoparticles embedded phosphomolybdate-polyaniline hybrid electrode for electrocatalytic reduction of H2O2. Journal of Solid State Electrochemistry, 15, 153–160. DOI: 10.1007/s10008-010-1080-2. http://dx.doi.org/10.1007/s10008-010-1080-2 [CrossRef]

  • [163] Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solution. Electrocatalysis, 3, 22–29. DOI: 10.1007/s12678-011-0072-z. http://dx.doi.org/10.1007/s12678-011-0072-z [CrossRef]

  • [164] Martins, C. R., de Almeida, Y. M., do Nascimento, G. C., & de Azevedo, W. M. (2006). Metal nanoparticles incorporation during the photopolymerization of polypyrrole. Journal of Materials Science, 41, 7413–7418. DOI: 10.1007/s10853-006-0795-z. http://dx.doi.org/10.1007/s10853-006-0795-z [CrossRef]

  • [165] Mazur, M., Michota-Kamińska, A., & Bukowska, J. (2007). Facile electrochemical fabrication of polymeric templates for spatially selective deposition of metals. Electrochemistry Communications, 9, 2418–2422. DOI: 10.1016/j.elecom.2007. 07.018. http://dx.doi.org/10.1016/j.elecom.2007.07.018 [CrossRef]

  • [166] Mo, Z. L., Zuo, D. D., Chen, H., Sun, Y. X., & Zhang, P. (2007). Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 43, 300–306. DOI: 10.1016/j.eurpolymj.2006.11.023. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.023 [CrossRef]

  • [167] Mukherjee, P., & Nandi, A. K. (2009). Electronic properties of poly(o-methoxy aniline)-silver nanocomposite thin films: influence of nanoparticle size and density. Journal of Materials Chemistry, 19, 781–786. DOI: 10.1039/b813203h. [CrossRef]

  • [168] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2008a). Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small, 4, 1301–1306. DOI: 10.1002/smll.200701199. http://dx.doi.org/10.1002/smll.200701199 [CrossRef]

  • [169] Muñoz-Rojas, D., Oró-Solé, J., & Gómez-Romero, P. (2008b). From nanosnakes to nanosheets: A matrix-mediated shape evolution. Journal of Physical Chemistry C, 112, 20312–20318. DOI: 10.1021/jp808187w. http://dx.doi.org/10.1021/jp808187w [CrossRef]

  • [170] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2011). Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. Journal of Materials Chemistry, 21, 2078–2086. DOI: 10.1039/c0jm01449d. http://dx.doi.org/10.1039/c0jm01449d [CrossRef]

  • [171] Nadagouda, M. N., & Varma, R. S. (2007). Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromolecular Rapid Communications, 28, 2106–2111. DOI: 10.1002/marc.200700495. http://dx.doi.org/10.1002/marc.200700495 [CrossRef]

  • [172] Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: Catalytic polymerization of aniline and pyrrole. Journal of Nanomaterials, 2008, 782358. DOI: 10.1155/2008/782358. http://dx.doi.org/10.1155/2008/782358 [CrossRef]

  • [173] Narang, J., Chauhan, N., Jain, P., & Pundir, C. S. (2012). Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules, 50, 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.023 [CrossRef]

  • [174] Neelgund, G. M., Hrehorova, E., Joyce, M., & Bliznyuk, V. (2008). Synthesis and characterization of polyaniline derivatives and silver nanoparticle composites. Polymer International, 57, 1083–1089. DOI: 10.1002/pi.2445. http://dx.doi.org/10.1002/pi.2445 [CrossRef]

  • [175] Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005. http://dx.doi.org/10.1016/j.compscitech.2010.11.005 [CrossRef]

  • [176] Nguyen, V. H., & Shim, J. J. (2011). Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synthetic Metals, 161, 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017. http://dx.doi.org/10.1016/j.synthmet.2011.07.017 [CrossRef]

  • [177] Ocypa, M., Ptacińska, M., Michalska, A., Maksymiuk, K., & Hall, E. A. H. (2006). Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): The reaction/diffusion balance. Journal of Electroanalytical Chemistry, 596, 157–168. DOI: 10.1016/j.jelechem.2006.07.032. http://dx.doi.org/10.1016/j.jelechem.2006.07.032 [CrossRef]

  • [178] Oliveira, M. M., Zanchet, D., Ugarte, D., & Zarbin, A. J. G. (2004) Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites. Progress in Colloid and Polymer Science, 128, 49–60. DOI: 10.1007/b97108. [CrossRef]

  • [179] Oliveira, M. M., Castro, E. G., Canestraro, C. D., Zanchet, D., Ugarte, D., Roman, L. S., & Zarbin, A. J. G. (2006). A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of Physical Chemistry B, 110, 17063–17069. DOI: 10.1021/jp060861f. http://dx.doi.org/10.1021/jp060861f [CrossRef]

  • [180] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-8 [CrossRef]

  • [181] Palaniappan, S., & Rajender, B. (2010). A novel polyanilinesilver nitrate-p-toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β-amino ketones: “One-pot” synthesis in water medium. Advanced Synthesis & Catalysis, 352, 2507–2514. DOI: 10.1002/adsc.201000346. http://dx.doi.org/10.1002/adsc.201000346 [CrossRef]

  • [182] Park, E. Y., Kim, H. Y., Song, J. Y., Oh, H. T., Song, H., & Jang, J. S. (2012). Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromolecular Research, 20, 1096–1101. DOI: 10.1007/s13233-012-0150-y. http://dx.doi.org/10.1007/s13233-012-0150-y [CrossRef]

  • [183] Patil, D. S., Shaikh, J. S., Pawar, S. A., Devan, R. S., Ma, Y. R., Moholkar, A. V., Kim, J. H., Kalubarme, R. S., Park, C. J., & Patil, P. S. (2012). Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry, Chemical Physics, 14, 11886–11895. DOI: 10.1039/c2cp41757j. http://dx.doi.org/10.1039/c2cp41757j [CrossRef]

  • [184] Paulraj, P., Janaki, N., Sandhya, S., & Pandian, K. (2011). Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 28–34. DOI: 10.1016/j.colsurfa.2010.12.001. http://dx.doi.org/10.1016/j.colsurfa.2010.12.001 [CrossRef]

  • [185] Peng, Y. J., Qiu, L. H., Pan, C. T., Wang, C. C., Shang, S. M., & Yan, F. (2012). Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochimica Acta, 75, 399–405. DOI: 10.1016/j.electacta.2012.05.034. http://dx.doi.org/10.1016/j.electacta.2012.05.034 [CrossRef]

  • [186] Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/s0003-2670(98)00144-5. http://dx.doi.org/10.1016/S0003-2670(98)00144-5 [CrossRef]

  • [187] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., & Bertino, M. F. (2005). One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials, 17, 5941–5944. DOI: 10. 1021/cm050827y. http://dx.doi.org/10.1021/cm050827y [CrossRef]

  • [188] Pintér, E., Patakfalvi, R., Fülei, T., Gingl, Z., Dékány, I., & Visy, C. (2005). Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants. Journal of Physical Chemistry B, 109, 17474–17478. DOI: 10.1021/jp0517652. http://dx.doi.org/10.1021/jp0517652 [CrossRef]

  • [189] Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153: DOI 10.1016/j.colsurfb.2011.03.033. http://dx.doi.org/10.1016/j.colsurfb.2011.03.033 [CrossRef]

  • [190] Prokeš, J., Křivka, I., & Stejskal, J. (1997). Control of electrical properties of polyaniline. Polymer International, 43, 117–125. DOI: 10.1002/(sici)1097-0126(199706)43:2〈117::aidpi713〉3.3.co;2-u. http://dx.doi.org/10.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-2 [CrossRef]

  • [191] Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.012 [CrossRef]

  • [192] Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. 10.1016/s0079-6700(01)00043-0. http://dx.doi.org/10.1016/S0079-6700(01)00043-0

  • [193] Ptschelin, V. (1935). Über die Sole des Emeraldins I. Die chemische Natur, die Gewinnung und die Eigenschaften der Sole. Colloid & Polymer Science, 70, 306–311. DOI: 10.1007/bf01442769. (in German) [CrossRef]

  • [194] Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Surface and charge transport characterization of polyaniline-cellulose acetate composite mebranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m. http://dx.doi.org/10.1021/jp109455m [CrossRef]

  • [195] Qin, X. Y., Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 13, 785–787. DOI: 10.1016/j.elecom.2011.05.002. http://dx.doi.org/10.1016/j.elecom.2011.05.002 [CrossRef]

  • [196] Qin, X.Y., Liu, S., Lu, W. B., Li, H.Y., Chang, G.H., Zhang, Y. W., Tian, J. Q., Luo, Y. L., Asiri, A. M., Al-Youbi, A. O., & Sun, X. P. (2012). Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science & Technology, 2, 711–714. DOI: 10.1039/c2cy00439a. http://dx.doi.org/10.1039/c2cy00439a [CrossRef]

  • [197] Qiu, T., Xie, H. X., Zhang, J. R., Zahoor, A., & Li, X. Y. (2011). The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. Journal of Nanoparticle Research, 13, 1175–1182. DOI: 10.1007/s11051-010-0109-x. http://dx.doi.org/10.1007/s11051-010-0109-x [CrossRef]

  • [198] Reddy, K. R., Lee, K. P., Lee, Y. I., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer-metal hydrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62, 1815–1818. DOI: 10.1016/j.matlet.2007.10.025. http://dx.doi.org/10.1016/j.matlet.2007.10.025 [CrossRef]

  • [199] Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H. I., & Lee, Y. I. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030. http://dx.doi.org/10.1016/j.synthmet.2008.11.030 [CrossRef]

  • [200] Routh, P., Mukherjee, P., & Nandi, A. K. (2010). RNA-poly(omethoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: Physical and electronic properties. Langmuir, 26, 5093–5100. DOI: 10.1021/la903553t. http://dx.doi.org/10.1021/la903553t [CrossRef]

  • [201] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.034 [CrossRef]

  • [202] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.2476 [CrossRef]

  • [203] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential application in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.1478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-3 [CrossRef]

  • [204] Sapurina, I. Y., & Stejskal, J. (2010). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140. http://dx.doi.org/10.1070/RC2010v079n12ABEH004140 [CrossRef]

  • [205] Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI: 10.1134/s1070363212020168. http://dx.doi.org/10.1134/S1070363212020168 [CrossRef]

  • [206] Šeděnková, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t. http://dx.doi.org/10.1021/am900320t [CrossRef]

  • [207] Šeděnková, M., & Prokeš, J. (2011). Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 161, 1353–1360. DOI: 10.1016/j.synthmet.2011.04.037. http://dx.doi.org/10.1016/j.synthmet.2011.04.037 [CrossRef]

  • [208] Sestrem, R. H., Ferreira, D. C., Landers, R., Temperini, M. L. A., & do Nascimento, G. M. (2010). Synthesis and spectroscopic characterization of polymer and oligomers of orthophenylenediamine. European Polymer Journal, 46, 484–493. DOI: 10.1016/j.eurpolymj.2009.12.007. http://dx.doi.org/10.1016/j.eurpolymj.2009.12.007 [CrossRef]

  • [209] Sezer, A., Gurudas, U., Collins, B., Mckinlay, A., & Bubb, D. M. (2009). Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chemical Physics Letters, 477, 164–168. DOI: 10.1016/j.cplett.2009. 06.070. http://dx.doi.org/10.1016/j.cplett.2009.06.070 [CrossRef]

  • [210] Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica, 18, 1327–1331. DOI: 10.1016/j.scient.2011.08.013. http://dx.doi.org/10.1016/j.scient.2011.08.013 [CrossRef]

  • [211] Sharma, J., & Imae, T. (2009). Recent advances in fabrication of anisotropic metallic nanostructures. Journal of Nanoscience and Nanotechnology, 9, 19–40. DOI: 10.1166/jnn.2009.j087. http://dx.doi.org/10.1166/jnn.2009.J087 [CrossRef]

  • [212] Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.005 [CrossRef]

  • [213] Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive & Functional Polymers, 71, 766–773. DOI: 10.1016/j.reactfunctpolym.2011.02.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.004 [CrossRef]

  • [214] Shi, Z. Q., Wang, H. J., Dai, T. Y., & Lu, Y. (2010). Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules. Synthetic Metals, 160, 2121–2127. DOI: 10.1016/j.synthmet.2010.07.042. http://dx.doi.org/10.1016/j.synthmet.2010.07.042 [CrossRef]

  • [215] Shi, Z. Q., Zhou, H., Qing, X. T., Dai, T. Y., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040. http://dx.doi.org/10.1016/j.apsusc.2012.03.040 [CrossRef]

  • [216] Shin, D. Y., & Kim, I. (2009). Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Nanotechnology, 20, 415301. DOI: 10.1088/0957-4484/20/41/415301. http://dx.doi.org/10.1088/0957-4484/20/41/415301 [CrossRef]

  • [217] Shukla, V. K., Yadav, P., Yadav, R. S., Mishra, P., & Pandey, A. C. (2012). A new class of PANI-Ag core-shell nanorods with sensing dimensions. Nanoscale, 4, 3886–3893. DOI: 10.1039/c2nr30963g. http://dx.doi.org/10.1039/c2nr30963g [CrossRef]

  • [218] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.2898 [CrossRef]

  • [219] Sim, S. Y., Gu, Y. J., Ahn, H. J., Yoon, C. S., & Im, S. S. (2009). Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°. Polymer Degradation and Stability, 94, 208–212. DOI: 10.1016/j.polymdegradstab.2008.11.002. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.002 [CrossRef]

  • [220] Sinai, O., & Avnir, D. (2011). Organics@metals as the basis for silver/doped-silver electrochemical cell. Chemistry of Materials, 23, 3289–3295. DOI: 10.1021/cm2000655. http://dx.doi.org/10.1021/cm2000655 [CrossRef]

  • [221] Singh, R. P., Tiwari, A., & Pandey, A. C. (2011). Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. Journal of Inorganic and Organometalic Polymers and Materials, 21, 788–792. DOI: 10.1007/s10904-011-9554-y. http://dx.doi.org/10.1007/s10904-011-9554-y [CrossRef]

  • [222] Song, W., Jia, H. Y., Cong, Q., & Zhao, B. (2007). Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. Journal of Colloid and Interface Science, 311, 456–460. DOI: 10.1016/j.jcis.2007.03.058. http://dx.doi.org/10.1016/j.jcis.2007.03.058 [CrossRef]

  • [223] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003 [CrossRef]

  • [224] Stamplecoskie, K. G., & Scaiano, J. C. (2011). Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 115, 1403–1409. DOI: 10.1021/jp106666t. http://dx.doi.org/10.1021/jp106666t [CrossRef]

  • [225] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258.

  • [226] Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93) 91266-5. http://dx.doi.org/10.1016/0379-6779(93)91266-5 [CrossRef]

  • [227] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-f. http://dx.doi.org/10.1016/0032-3861(95)90996-F [CrossRef]

  • [228] Stejskal, J., Kratochvíl, P., & Helmstedt, M. (1996a). Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir, 12, 3389–3392. DOI: 10.1021/la9506483. http://dx.doi.org/10.1021/la9506483 [CrossRef]

  • [229] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996b). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x. http://dx.doi.org/10.1016/0032-3861(96)81113-X [CrossRef]

  • [230] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac200274050857 [CrossRef]

  • [231] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-0 [CrossRef]

  • [232] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.007 [CrossRef]

  • [233] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.012 [CrossRef]

  • [234] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q [CrossRef]

  • [235] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008c). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z [CrossRef]

  • [236] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.2605 [CrossRef]

  • [237] Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026. http://dx.doi.org/10.1016/j.matlet.2008.12.026 [CrossRef]

  • [238] Stejskal, J., Trchová, M., Brožovš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z [CrossRef]

  • [239] Stejskal, J., Trchová, M., Kovářová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.11.004 [CrossRef]

  • [240] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.006 [CrossRef]

  • [241] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.3179 [CrossRef]

  • [242] Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) dispersions. Journal of Colloid and Interface Science, 236, 328–334. DOI: 10.1006/jcis.2000.7415. http://dx.doi.org/10.1006/jcis.2000.7415 [CrossRef]

  • [243] Sun, X. P. (2010). Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 46, 679–682. DOI: 10.1134/s0020168510060208. http://dx.doi.org/10.1134/S0020168510060208 [CrossRef]

  • [244] Sun, X. P., Dong, S. J., & Wang, E. K. (2005). Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 290, 130–133. DOI: 10.1016/j.jcis.2005.04.016. http://dx.doi.org/10.1016/j.jcis.2005.04.016 [CrossRef]

  • [245] Sun, X. P., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag and Au at room temperature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x. http://dx.doi.org/10.1021/la701519x [CrossRef]

  • [246] Sun, Y. Y., Guo, G. H., Yang, B. H., He, M. H., Tian, Y., Cheng, J. C., & Liu, Y. Q. (2012). Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. Journal of Materials Research, 27, 457–462. DOI: 10.1557/jmr.2011.408. http://dx.doi.org/10.1557/jmr.2011.408 [CrossRef]

  • [247] Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006. http://dx.doi.org/10.1016/j.colsurfb.2011.11.006 [CrossRef]

  • [248] Tan, Y. W., Li, Y. F., & Zhu, D. B. (2003). Preparation of silver nanocrystals in the presence of aniline. Journal of Colloid and Interface Science, 258, 244–251. DOI: 10.1016/s0021-9797(02)00151-0. http://dx.doi.org/10.1016/S0021-9797(02)00151-0 [CrossRef]

  • [249] Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/s0008-6223(03)00067-8. http://dx.doi.org/10.1016/S0008-6223(03)00067-8 [CrossRef]

  • [250] Thanjam, S., Philips, M. F., Komathi, S., Manisankar, P., Sivakumar, C., Gopalan, A., & Lee, K. P. (2011). Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1256–1266. DOI: 10.1016/j.saa.2011.04.052. http://dx.doi.org/10.1016/j.saa.2011.04.052 [CrossRef]

  • [251] Thanjam, I. S., Philips, M. F., Komathi, S., Manisankar, P., Gopalan, A. I., & Lee, K. P. (2012a). Influence of medium on the nanostructures and properties of poly(4-aminodiphenylamine)-silver nanocomposites. Polymer International, 61, 539–544. DOI: 10.1002/pi.3200. http://dx.doi.org/10.1002/pi.3200 [CrossRef]

  • [252] Thanjam, I. S., Philips, M. F., Lee, K. P., & Gopalan, A. (2012b). Preparation of poly(4-aminodiphenylamine)/silver nanoparticles composite and catalysis. Journal of Materials Science: Materials in Electronics, 23, 807–810. DOI: 10.1007/s10854-011-0496-5. http://dx.doi.org/10.1007/s10854-011-0496-5 [CrossRef]

  • [253] Tian, Y., Li, Z. Q., Ski, K., & Yang, F. L. (2008). Spontaneous and electrochemical reduction of silver by polypyrrole deposits. Separation Science and Technology, 43, 3891–3901. DOI: 10.1080/01496390802212625. http://dx.doi.org/10.1080/01496390802212625 [CrossRef]

  • [254] Tian, J. Q., Liu, S., & Sun, X. P. (2010). Supramolecular microfibrils of o-phenylenediamine dimers: Oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir, 26, 15112–15116. DOI: 10.1021/la103038m. http://dx.doi.org/10.1021/la103038m [CrossRef]

  • [255] Tian, J. Q., Li, H. L., Lu, W. B., Luo, Y. L., Wang, L., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated poly(mphenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, 136, 1806–1809. DOI: 10.1039/c0an00929f. http://dx.doi.org/10.1039/c0an00929f [CrossRef]

  • [256] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008). Substituted polyaniline nanofibers produced via rapid initiated polymerization, Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122d [CrossRef]

  • [257] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.001 [CrossRef]

  • [258] Trchová, M., & Stejskal, J. (2010). The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 160, 1479–1486. DOI: 10.1016/j.synthmet.2010.05.007. http://dx.doi.org/10.1016/j.synthmet.2010.05.007 [CrossRef]

  • [259] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-6 [CrossRef]

  • [260] Tsakova, V. (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 12, 1421–1434. DOI: 10.1007/s10008-007-0494-y. http://dx.doi.org/10.1007/s10008-007-0494-y [CrossRef]

  • [261] Visy, C., Pintér, E., Fülei, T., & Ptakfalvi, R. (2005). Characterization of electronically conducting polypyrrole based composite materials. Synthetic Metals, 152, 13–16. DOI: 10.1016/j.synthmet.2005.07.084. http://dx.doi.org/10.1016/j.synthmet.2005.07.084 [CrossRef]

  • [262] Vorotyntsev, M. A., Skompska, M., Rajchowska, A., Borysiuk, J., & Donten, M. (2011). A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. Journal of Electroanalytical Chemistry, 662, 105–115. DOI: 10.1016/j.jelechem.2011.03. 037. [CrossRef]

  • [263] Wang, H. L., Li, W. G., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposi tion of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm0619508 [CrossRef]

  • [264] Wang, S. B., & Shi, G. Q. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics, 102, 255–259. DOI: 10.1016/j.matchemphys.2006.12.014. http://dx.doi.org/10.1016/j.matchemphys.2006.12.014 [CrossRef]

  • [265] Wang, W., Li, Q., Li, Y., Xu, H., & Zhai, J. P. (2009a). Electroless Ag coating of fly ash cenospheres using polyaniline activator. Journal of Physics D: Applied Physics, 42, 215306. DOI: 10.1088/0022-3727/42/21/215306. http://dx.doi.org/10.1088/0022-3727/42/21/215306 [CrossRef]

  • [266] Wang, W. Q., Shi, G. Q., & Zhang, R. F. (2009b). Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 44, 3002–3005. DOI: 10.1007/s10853-009-3416-9. http://dx.doi.org/10.1007/s10853-009-3416-9 [CrossRef]

  • [267] Wang, W. Q., & Zhang, R. F. (2009). Silver-polypyrrole composites: Facile preparation and application in surfaceenhanced Raman spectroscopy. Synthetic Metals, 159, 1332–1335. DOI: 10.1016/j.synthmet.2009.03.002. http://dx.doi.org/10.1016/j.synthmet.2009.03.002 [CrossRef]

  • [268] Wang, W. Q., Li, W. L., Ye, J., & Zhang, R. F. (2010a). Surface enhanced Raman scattering of Rhodamine B adsorbed on polypyrrole-silver composites. Journal of Polymer Materials, 27, 351–357.

  • [269] Wang, W. Q., Li, W. L., & Zhang, R. F. (2010b). Controlled fabrication of surface-enhanced-Raman scattering-active silver nanostructures on polypyrrole films. Materials Chemistry and Physics, 124, 385–388. DOI: 10.1016/j.matchemphys.2010.06.051. http://dx.doi.org/10.1016/j.matchemphys.2010.06.051 [CrossRef]

  • [270] Wang, W. Q., Li, W. L., Zhang, R. F., & Wang, J. J. (2010c). Synthesis and characterization of Ag@PPy yolk-shell nanocomposite. Synthetic Metals, 160, 2255–2259. DOI: 10.1016/j.synthmet.2010.08.016. http://dx.doi.org/10.1016/j.synthmet.2010.08.016 [CrossRef]

  • [271] Wang, Z. F., Liao, F., Guo, T. T., Yang, S. W., & Zeng, C. M. (2012a). Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. Journal of Electroanalytical Chemistry, 664, 135–138. DOI: 10.1016/j.jelechem.2011.11.006. http://dx.doi.org/10.1016/j.jelechem.2011.11.006 [CrossRef]

  • [272] Wang, L., Zhu, H. Z., Song, Y. H., Liu, L., He, Z. F., Wan, L. L., Chen, S. H., Xiang, Y., Chen, S. S., & Chen, J. (2012b). Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide senor. Electrochimica Acta, 60, 314–320. DOI: 10.1016/j.electacta.2011.11.045. http://dx.doi.org/10.1016/j.electacta.2011.11.045 [CrossRef]

  • [273] Wei, M., & Lu, Y. (2009). Templating fabrication of polypyrrole nanorods/nanofibers. Synthetic Metals, 159, 1061–1066. DOI: 10.1016/j.synthmet.2009.01.031. http://dx.doi.org/10.1016/j.synthmet.2009.01.031 [CrossRef]

  • [274] Wei, Y. Y., Liang, L., Yang, X. M., Pan, G. L., Yan, G. P., & Yu, X. H. (2010a). One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Research Letters, 5, 443–437. DOI: 10.1007/s11671-009-9501-9. [CrossRef]

  • [275] Wei, Y. Y., Zhao, Y., Li, L., Yang, X. M., Yu, X. H., & Yan, G. P. (2010b). Magnetic ionic liquid-assisted syntesis of polypyrrole/AgCl nanocomposites. Polymers for Advanced Technologies, 21, 742–745. DOI: 10.1002/pat.1682. http://dx.doi.org/10.1002/pat.1682 [CrossRef]

  • [276] Wessling, B., Thun, M., Arribas-Sanchez, C., Gleeson, S., Posdorfer, J., Rischka, M., & Zeysing, B. (2007). An organic metal/silver nanoparticle finish on copper for efficient passivation and solderability preservation. Nanoscale Research Letters, 2, 455–460. DOI: 10.1007/s11671-007-9086-0. http://dx.doi.org/10.1007/s11671-007-9086-0 [CrossRef]

  • [277] Wolz, A., Zils, S., Michel, M., & Roth, C. (2010). Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. Journal of Power Sources, 195, 8162–8167. DOI: 10.1016/j.jpowsour.2010.06.087. http://dx.doi.org/10.1016/j.jpowsour.2010.06.087 [CrossRef]

  • [278] Wu, X. M., Qi, S. H., He, J., Chen, B., & Duan, G. C. (2010). Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. Journal of Polymer Research, 17, 751–757. DOI: 10.1007/s10965-009-9366-8. http://dx.doi.org/10.1007/s10965-009-9366-8 [CrossRef]

  • [279] Wu, X. M., Qi, S. H., & Duan, G. C. (2012). Polyaniline/graphite nanosheet, polyaniline/Ag/graphite nanosheet, polyaniline/Ni/graphite nanosheet composites and their electromagnetic properties. Synthetic Metals, 162, 1609–1614. DOI: 10.1016/j.synthmet.2012.07.012. http://dx.doi.org/10.1016/j.synthmet.2012.07.012 [CrossRef]

  • [280] Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026. http://dx.doi.org/10.1021/ja00246a026 [CrossRef]

  • [281] Xia, Y. Y. (2011). The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature. Journal of Nanoparticle Research, 13, 1717–1721. DOI: 10.1007/s11051-010-9926-1. http://dx.doi.org/10.1007/s11051-010-9926-1 [CrossRef]

  • [282] Xing, S. X., & Zhao, G. K. (2007). One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 61, 2040–2044. DOI: 10.1016/j.matlet.2006.08.011. http://dx.doi.org/10.1016/j.matlet.2006.08.011 [CrossRef]

  • [283] Xu, P., Jeon, S. H., Chen, H. T., Luo, H. M., Zou, G. F., Jia, Q. X., Anghel, M., Teuscher, C., Williams, D. J., Zhang, B., Han, X. J., & Wang, H. L. (2010a). Facile synthesis of electrical properties of silver wires through chemical reduction by polyaniline. Journal of Physical Chemistry C, 114, 22147–22154. DOI: 10.1021/jp109207d. http://dx.doi.org/10.1021/jp109207d [CrossRef]

  • [284] Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010b). Field assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2, 1436–1440. DOI: 10.1039/c0nr00106f. http://dx.doi.org/10.1039/c0nr00106f [CrossRef]

  • [285] Xu, P., Mack, N. H., Jeon, S. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010c). Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir, 26, 8882–8886. DOI: 10.1021/la904617p. http://dx.doi.org/10.1021/la904617p [CrossRef]

  • [286] Xu, P., Zhang, B., Mack, N. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010d). Synthesis and homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 20, 7222–7226. DOI: 10.1039/c0jm01322f. http://dx.doi.org/10.1039/c0jm01322f [CrossRef]

  • [287] Yan, J., Han, X. J., He, J. J., Kang, L. L., Zhang, B., Du, Y. C., Zhao, H. T., Dong, C. K., Wang, H. L., & Xu, P. (2012). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Applied Materials & Interfaces, 4, 2752–2756. DOI: 10.1021/am300381v. http://dx.doi.org/10.1021/am300381v [CrossRef]

  • [288] Yang, X. M., & Lu, Y. (2005). Hollow nanometer-sized polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan. Polymer, 46, 5324–5328. DOI: 10.1016/j.polymer.2005.04.023. http://dx.doi.org/10.1016/j.polymer.2005.04.023 [CrossRef]

  • [289] Yang, X. M., Li, L., & Yan, F. (2010a). Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065. http://dx.doi.org/10.1016/j.snb.2009.12.065 [CrossRef]

  • [290] Yang, X. M., Li, L., & Yan, F. (2010b). Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chemistry Letters, 39, 118–119. DOI: 10.1246/cl.2010.118. http://dx.doi.org/10.1246/cl.2010.118 [CrossRef]

  • [291] Yang, X. M., Li, L., & Zhao, Y. (2010c). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic Metals, 160, 1822–1825. DOI: 10.1016/j.synthmet.2010.06.018. http://dx.doi.org/10.1016/j.synthmet.2010.06.018 [CrossRef]

  • [292] Yang, X., & Wang, E. (2011). A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Analytical Chemistry, 83, 5005–5011. DOI: 10.1021/ac2008465. http://dx.doi.org/10.1021/ac2008465 [CrossRef]

  • [293] Yang, J. P., Yin, H. J., Jia, J. J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27, 5047–5053. DOI: 10.1021/la200013z. http://dx.doi.org/10.1021/la200013z [CrossRef]

  • [294] Yang, Y. Q., Qi, S. H., Qin, Y. C., & Zhang, X. X. (2012a). Synthesis and characterization of silver-coated graphite nanosheets with pyrrole via in situ polymerization. Journal of Applied Polymer Science, 125, E388–E397. DOI: 10.1002/app.36383. http://dx.doi.org/10.1002/app.36383 [CrossRef]

  • [295] Yang, M., Xiang, Z. J., & Wang, G. (2012b). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI: 10.1016/j.jcis.2011.08.086. http://dx.doi.org/10.1016/j.jcis.2011.08.086 [CrossRef]

  • [296] Yao, T. J., Wang, C. X., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001. http://dx.doi.org/10.1016/j.jcis.2009.05.001 [CrossRef]

  • [297] Ye, S. J., & Lu, Y. (2008). Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. Journal of Physical Chemistry C, 112, 8767–8772. DOI: 10.1021/jp077710c. http://dx.doi.org/10.1021/jp077710c [CrossRef]

  • [298] Ye, S. J., Fang, L., & Lu, Y. (2009). Contribution of chargetransfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Physical Chemistry Chemical Physics, 11, 2480–2484. DOI: 10.1039/b816070h. http://dx.doi.org/10.1039/b816070h [CrossRef]

  • [299] Yi, Q. F., & Song, L. H. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200 154. http://dx.doi.org/10.1002/elan.201200154 [CrossRef]

  • [300] Yin, H. J., & Yang, J. P. (2012). A novel strategy for the controlled synthesis of silver halide/polyaniline nanocomposites with different polyaniline morphologies. Macromolecular Materials and Engineering, 297, 203–208. DOI: 10.1002/mame.201100130. http://dx.doi.org/10.1002/mame.201100130 [CrossRef]

  • [301] ZabrodskiĽ, A. G., Kompan, M. E., Malyshkin, V. G., & Sapurina, I. Y. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/s1063785006090070. http://dx.doi.org/10.1134/S1063785006090070 [CrossRef]

  • [302] Zhang, A. Q., Cui, C. Q., Lee, J. Y., & Loh, F. C. (1995). Interactions between polyaniline and silver cations. Journal of Electrochemical Society, 142, 1097–1104. DOI: 10.1149/1.2044136. http://dx.doi.org/10.1149/1.2044136 [CrossRef]

  • [303] Zhang, A. Q., Cui, C. Q., & Lee, J. Y. (1996). Metalpolymer interactions in the Ag+|poly-o-aminophenol system. Journal of Electroanalytical Chemistry, 413, 143–151. DOI: 10.1016/0022-0728(96)04668-2. http://dx.doi.org/10.1016/0022-0728(96)04668-2 [CrossRef]

  • [304] Zhang, X. Y., & Manohar, S. K. (2005). Narrow pore-diameter polypyrrole nanotubes. Journal of the American Chemical Society, 127, 14156–14157. DOI: 10.1021/ja054789v. http://dx.doi.org/10.1021/ja054789v [CrossRef]

  • [305] Zhang, W. M., Chen, J., Wagner, P., Swiegers, G. F., & Wallace, G. G. (2008). Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 10, 519–522. DOI: 10.1016/j.elecom.2008.01.032. http://dx.doi.org/10.1016/j.elecom.2008.01.032 [CrossRef]

  • [306] Zhang, X. L., Xing, J. X., & Jin, F. (2010). Electrocatalytic study of silver/polypyrrole nanowire composite modified electrodes. Asian Journal of Chemistry, 22, 755–760.

  • [307] Zhang, L. Y., Chai, L. Y., Duan, J. Y., Li, G. L., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011a). One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letters, 65, 1295–1298, DOI: 10.1016/j.matlet.2011.01.062. http://dx.doi.org/10.1016/j.matlet.2011.01.062 [CrossRef]

  • [308] Zhang, L. Y., Chai, L. Y., Liu, J., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011b). pH manipulation: A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir, 27, 13729–13738. DOI: 10.1021/la203162y. http://dx.doi.org/10.1021/la203162y [CrossRef]

  • [309] Zhang, Y. W., Wang, L., Tian, J. Q., Li, H. L., Luo, Y. L., & Sun, X. P. (2011c). Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 27, 2170–2175. DOI: 10.1021/la105092f. http://dx.doi.org/10.1021/la105092f [CrossRef]

  • [310] Zhang, X., Zhi, W. X., Yan, B., & Xu, X. X. (2012). α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technology, 221, 177–182. DOI: 10.1016/j.powtec.2011.12.064. http://dx.doi.org/10.1016/j.powtec.2011.12.064 [CrossRef]

  • [311] Zhao, C. J., Zhao, Q. T., Zhao, Q. Z., Qiu, J. R., Zhu, C. S., & Guo, S. W. (2007). Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 187, 146–151. DOI: 10.1016/j.jphotochem.2006.10.006. http://dx.doi.org/10.1016/j.jphotochem.2006.10.006 [CrossRef]

  • [312] Zhao, B. B., & Nan, Z. D. (2012a). Enhancement of electrical conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy/NPs. Materials Science and Engineering: C, 32, 804–810. DOI: 10.1016/j.msec.2012.01.030. http://dx.doi.org/10.1016/j.msec.2012.01.030 [CrossRef]

  • [313] Zhao, B. B., & Nan, Z. D. (2012b). Formation of self-assembled nanofiber-like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering: C, 32, 1971–1975. DOI: 10.1016/j.msec.2012.05.029. http://dx.doi.org/10.1016/j.msec.2012.05.029 [CrossRef]

  • [314] Zhao, Y. C., Tomšík, E., Wang, J. X., Morávková, Z., Zhigunov, A., Stejskal, J., & Trchová, M. (2013). Self-assembly of aniline oligomers. Chemistry — An Asian Journal, 8, 129–137. DOI: 10.1002/asia.201200836. http://dx.doi.org/10.1002/asia.201200836 [CrossRef]

  • [315] Zhou, H. H., Ning, X. H., Li, S. L., Chen, J. H., & Kuang, Y. F. (2006). Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 510, 164–168. DOI: 10.1016/j.tsf.2005.12.310. http://dx.doi.org/10.1016/j.tsf.2005.12.310 [CrossRef]

  • [316] Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Wang, M. H., Li, G. X., & Yang, R. H. (2009). Fabrication of polyaniline-silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films, 517, 6767–6771. DOI: 10.1016/j.tsf.2009.05.043. http://dx.doi.org/10.1016/j.tsf.2009.05.043 [CrossRef]

  • [317] Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., & Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterifacion of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 383, 169–181. DOI: 10.1016/j.apcata.2010.05.042. http://dx.doi.org/10.1016/j.apcata.2010.05.042 [CrossRef]

  • [318] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.201000703 [CrossRef]

  • [319] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772t [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Go Kawamura, Samuel Alvarez, Ian E. Stewart, Matthew Catenacci, Zuofeng Chen, and Yoon-Cheol Ha
Scientific Reports, 2015, Volume 5, Page 18333
[2]
Panagiotis Dallas and Vasilios Georgakilas
Advances in Colloid and Interface Science, 2015
[3]
Elizaveta Alekseeva, Patrycja Bober, Miroslava Trchová, Ivana Šeděnková, Jan Prokeš, and Jaroslav Stejskal
Synthetic Metals, 2015, Volume 209, Page 105
[4]
M. Saugo, D.O. Flamini, L.I. Brugnoni, and S.B. Saidman
Materials Science and Engineering: C, 2015, Volume 56, Page 95
[5]
Farnaz Lorestani, Zohreh Shahnavaz, Pooria Moozarm Nia, Y. Alias, and Ninie S.A. Manan
Applied Surface Science, 2015, Volume 347, Page 816
[6]
Jin Kawakita, Yasuo Hashimoto Shinoda, Takanori Shuto, and Toyohiro Chikyow
Japanese Journal of Applied Physics, 2015, Volume 54, Number 6S1, Page 06FJ12
[7]
Gagan Kaur, Raju Adhikari, Peter Cass, Mark Bown, and Pathiraja Gunatillake
RSC Adv., 2015, Volume 5, Number 47, Page 37553
[8]
Jaroslav Stejskal, Miroslava Trchová, Zuzana Morávková, Patrycja Bober, Michal Bláha, Jiří Pfleger, Przemysław Magdziarz, Jan Prokeš, Marek Havlicek, Niyazi Serdar Sariciftci, Andreas Sperlich, Vladimir Dyakonov, and Zoran Zujovic
Journal of Solid State Electrochemistry, 2015
[9]
F. Cellini, A. Grillo, and M. Porfiri
Applied Physics Letters, 2015, Volume 106, Number 13, Page 131902
[10]
Irina Sapurina, Andrey V Tenkovtsev, and Jaroslav Stejskal
Polymer International, 2015, Volume 64, Number 4, Page 453
[11]
Sheeba Ghani, Rehana Sharif, Shamaila Shahzadi, N. Zafar, A. W. Anwar, Ayesha Ashraf, Azhar A. Zaidi, Afzal H. Kamboh, and Saima Bashir
Journal of Materials Science, 2015, Volume 50, Number 3, Page 1469
[12]
Jaroslav Stejskal
Progress in Polymer Science, 2015, Volume 41, Page 1
[13]
[14]
Przemysław Magdziarz, Patrycja Bober, Miroslava Trchová, Zuzana Morávková, Michal Bláha, Jan Prokeš, and Jaroslav Stejskal
Polymer International, 2015, Volume 64, Number 4, Page 496
[15]
Vaishali Kamblea, Gunjan Kodwania, Ramdoss Sridharkrishna, and Balaprasad Ankamwar
Advances in nano research, 2014, Volume 2, Number 2, Page 111
[16]
Patrycja Bober, Jun Liu, Kirsi S. Mikkonen, Petri Ihalainen, Markus Pesonen, Carme Plumed-Ferrer, Atte von Wright, Tom Lindfors, Chunlin Xu, and Rose-Marie Latonen
Biomacromolecules, 2014, Volume 15, Number 10, Page 3655
[17]
Weijie Wang, Suping Sun, Shijia Gu, Hongwei Shen, Qihao Zhang, Juanjuan Zhu, Lianjun Wang, and Wan Jiang
RSC Advances, 2014, Volume 4, Number 51, Page 26810
[18]
Lei Huang, Xiaodan Yu, Li Gao, Lin Chen, Jiatong Wei, and Shuangxi Xing
New J. Chem., 2014, Volume 38, Number 7, Page 3029
[19]
Swarup Biswas, Bula Dutta, and Subhratanu Bhattacharya
Journal of Materials Science, 2014, Volume 49, Number 17, Page 5910
[20]
Barbara Horváth, Jin Kawakita, and Toyohiro Chikyow
ACS Applied Materials & Interfaces, 2014, Volume 6, Number 12, Page 9201
[21]
Jia Li, Lanlan Liu, Di Zhang, Dian Yang, Jinbao Guo, and Jie Wei
Synthetic Metals, 2014, Volume 192, Page 15
[22]
Saptarshi Dhibar and Chapal Kumar Das
Industrial & Engineering Chemistry Research, 2014, Volume 53, Number 9, Page 3495
[23]
Miroslava Trchová, Zuzana Morávková, Jiří Dybal, and Jaroslav Stejskal
ACS Applied Materials & Interfaces, 2014, Volume 6, Number 2, Page 942
[24]
Swarup Biswas, Bula Dutta, and Subhratanu Bhattacharya
Applied Surface Science, 2014, Volume 292, Page 420
[25]
Patrycja Bober, Jaroslav Stejskal, Miroslava Trchová, and Jan Prokeš
Electrochimica Acta, 2014, Volume 122, Page 259
[26]
Jitka Škodová, Dušan Kopecký, Martin Vrňata, Martin Varga, Jan Prokeš, Miroslav Cieslar, Patrycja Bober, and Jaroslav Stejskal
Polymer Chemistry, 2013, Volume 4, Number 12, Page 3610
[27]
Mária Omastová, Katarína Mosnáčková, Pavol Fedorko, Miroslava Trchová, and Jaroslav Stejskal
Synthetic Metals, 2013, Volume 166, Page 57

Comments (0)

Please log in or register to comment.