“Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity : Chemical Papers

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Chemical Papers


IMPACT FACTOR increased in 2014: 1.468

SCImago Journal Rank (SJR) 2014: 0.368
Source Normalized Impact per Paper (SNIP) 2014: 0.684
Impact per Publication (IPP) 2014: 1.284

VolumeIssuePage

Issues

“Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity

1Swami Ramanand Teerth Marathwada University

2Maharashtra Udayagiri Mahavidyalaya

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Chemical Papers. Volume 68, Issue 5, Pages 719–724, ISSN (Online) 1336-9075, DOI: 10.2478/s11696-013-0496-4, January 2014

Publication History

Published Online:
2014-01-28

Abstract

A novel series of indeno-benzothiazepine derivatives was synthesised via a “green” route. Synthesis of these compounds involves the treatment of dinucleophiles such as 2-aminobenzenethiols with α,β-unsaturated ketones in poly(oxyethylene) (poly(ethylene glycol), PEG-400) catalysed by acetic acid. The synthone α,β-unsaturated ketones were obtained by Claisen-Schmidt condensation of indan-1-one with substituted pyrazole-2-carbaldehydes prompted by bleaching earth (pH 12.5) as catalyst and PEG-400 as “green” reaction solvent. Screening of all the synthesised compounds for antimicrobial activity revealed that most of these compounds exhibited moderate to significant antimicrobial activity.

Keywords: indeno-benzothiazepine; PEG-400; bleaching earth; antimicrobial activity

  • [1] Ballini, R., Bosica, G., Maggi, R., Ricciutelli, M., Righi, P., Sartori, G., & Sartorio, R. (2001). Clay-catalysed solventless synthesis of trans-chalcones. Green Chemistry, 3, 178–180. DOI: 10.1039/b101355f. http://dx.doi.org/10.1039/b101355f [CrossRef]

  • [2] Baag, M. M., Sahoo, M. K., Puranik, V. G.,& Argade, N. P. (2007). Reactions of o-aminothiophenol and o-aminophenyl disulfide with itaconic anhydride and (-)-dimenthyl itaconate: Access to enantiomerically pure 1,5-benzothiazepines and benzothiazolyl-2-methylacrylic acid. Synthesis, 2007, 457–463. DOI: 10.1055/s-2006-958977. http://dx.doi.org/10.1055/s-2006-958977 [CrossRef] [Web of Science]

  • [3] Chandrasekhar, S., Narsihmulu, C., Sultana, S. S.,& Reddy, N. R. (2002). Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Organic Letters, 4, 4399–4401. DOI: 10.1021/ol0266976. http://dx.doi.org/10.1021/ol0266976 [CrossRef]

  • [4] Chandrasekhar, S., Narsihmulu, C., Sultana, S. S., & Reddy, N. R. (2003). Osmium tetroxide in poly(ethylene glycol) (PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chemical Communication, 2003, 1716–1717. DOI: 10.1039/b305154b. [CrossRef]

  • [5] Chen, J., Spear, S. K., Huddleston, J. G., & Rogers, R. D. (2005). Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 7, 64–82. DOI: 10.1039/b413546f. http://dx.doi.org/10.1039/b413546f [Web of Science] [CrossRef]

  • [6] Chobe, S. S., Dawane, B. S., Tumbi, K. M., Nandekar, P. P.,& Sangamwar, A. T. (2012). An ecofriendly synthesis and DNA binding interaction study of some pyrazolo[1,5-a]pyrimidines derivatives. Bioorganic & Medicinal Chemistry Letters, 22, 7566–7572. DOI: 10.1016/j.bmcl.2012.10.027. http://dx.doi.org/10.1016/j.bmcl.2012.10.027 [CrossRef] [Web of Science]

  • [7] Chobe, S. S., Kamble, R. D., Patil, S. D., Acharya, A. P., Hese, S. V., Yemul, O. S.,& Dawane, B. S. (2013). Green approach towards synthesis of substituted pyrazole-1,4-dihydro,9-oxa,1,2,6,8-tetrazacyclopentano[b]naphthalene-5-one derivatives as antimycobacterial agents. Medicinal Chemistry Research, 22, 5197–5203. DOI: 10.1007/s00044-013-0487-6. http://dx.doi.org/10.1007/s00044-013-0487-6 [CrossRef] [Web of Science]

  • [8] Cox, D. A., & Matlib, M. A. (1993). Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+ -Ca2+ exchange. Trends in Pharmacological Sciences, 14, 408–413. DOI: 10.1016/0165-6147(93)90063-p. http://dx.doi.org/10.1016/0165-6147(93)90063-P [CrossRef]

  • [9] Dawane, B. S., Konda, S. G., Mandawad, G. G.,& Shaikh, B. M. (2010a). Poly(ethylene glycol) (PEG-400) as an alternative reaction solvent for the synthesis of some new 1-(4-(4′-chlorophenyl-2-thiazolyl)-3-aryl-5-(2-butyl-4-chloro-1Himidazol-5-yl)-2-pyrazolines and their in vitro antimicrobial evaluation. European Journal of Medicinal Chemistry, 45, 387–392. DOI: 10.1016/j.ejmech.2009.10.015. http://dx.doi.org/10.1016/j.ejmech.2009.10.015 [Web of Science] [CrossRef]

  • [10] Dawane, B. S., Shaikh, B. M., Khandare, N. T., Kamble, V. T., Chobe, S. S.,& Konda, S. G. (2010b). Eco-friendly polyethylene glycol-400: a rapid and efficient recyclable reaction medium for the synthesis of thiazole derivatives. Green Chemistry Letters and Reviews, 3, 205–208. DOI: 10.1080/17518251003709506. http://dx.doi.org/10.1080/17518251003709506 [Web of Science] [CrossRef]

  • [11] De Sarro, G., Chimirri, A., De Sarro, A., Gitto, R., Grasso, S., & Zappalà, M. (1995). 5H[1,2,4]Oxadiazolo[5,4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Medicinal Chemistry, 30, 925–929. DOI: 10.1016/0223-5234(96)88311-5. http://dx.doi.org/10.1016/0223-5234(96)88311-5 [CrossRef]

  • [12] Di Santo, R., & Costi, R. (2005). 2H-Pyrrolo[3,4-b][1,5]benzothiazepine derivatives as potential inhibitors of HIV-1 reverse transcriptase. II Farmaco, 60, 385–392. DOI: 10.1016/j.farmac.2005.03.006. http://dx.doi.org/10.1016/j.farmac.2005.03.006

  • [13] El-Bayouki, K. A. M. (2013). Benzo[1,5]thiazepine: Synthesis, reactions, spectroscopy, and applications. Organic Chemistry International, 2013, 210474. DOI: 10.1155/2013/210474. http://dx.doi.org/10.1155/2013/210474 [CrossRef]

  • [14] Grandolini, G., Perioli, L.,& Ambrogi, V. (1999). Synthesis of some new 1,4-benzothiazine and 1,5-benzothiazepine tricyclic derivatives with structural analogy with TIBO and their screening for anti-HIV activity. European Journal of Medicinal Chemistry, 34, 701–709. DOI: 10.1016/s0223-5234(99)00223-8. http://dx.doi.org/10.1016/S0223-5234(99)00223-8 [CrossRef]

  • [15] Heldebrant, D. T., & Jessop, P. G. (2003). Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. Journal of the American Chemical Society, 125, 5600–5601. DOI: 10.1021/ja029131l. http://dx.doi.org/10.1021/ja029131l [CrossRef]

  • [16] Jain, R., Yadav, T., Kumar, M.,& Yadav, A. K. (2011). Facile ionic liquid-mediated protocol for the regioselective synthesis of 1,5-benzothiazepines. Synthetic Communications, 41, 1889–1900. DOI: 10.1080/00397911.2010.493626. http://dx.doi.org/10.1080/00397911.2010.493626 [CrossRef]

  • [17] Konda, S. G., Humne, V. T., & Lokhande, P. D. (2011). Rapid and selective deallylation of allyl ethers and esters using iodine in polyethylene glycol-400. Green Chemistry, 13, 2354–2358. DOI: 10.1039/c1gc15153c. http://dx.doi.org/10.1039/c1gc15153c [CrossRef] [Web of Science]

  • [18] Kurokawa, J., Adachi-Akahane, S.,& Nagao, T. (1997). Effects of a novel, potent benzothia-zepine Ca2+ channel antagonist, DTZ323, on guinea-pig ventricular myocytes. European Journal of Pharmacology, 325, 229–236. DOI: 10.1016/s0014-2999(97)00119-2. http://dx.doi.org/10.1016/S0014-2999(97)00119-2 [CrossRef]

  • [19] Miyata, O., Hinada, T., Ninomiya, I., & Naito, T. (1997). Asymmetric construction of two contiguous stereocenters by diastereoface differentiating addition reaction of thiols to chiral imides: Formal synthesis of (+)-diltiazem. Tetrahedron, 53, 2421–2438. DOI: 10.1016/s0040-4020(96)01191-x. http://dx.doi.org/10.1016/S0040-4020(96)01191-X [CrossRef]

  • [20] Prakash, O., Kumar, A. Sadana, A., Prakash, R., Singh, S. P., Claramunt, R. M., Sanz, D., Alkorta, I.,& Elguero, J. (2005). Study of the reaction of chalcone analogs of dehydroacetic acid and o-aminothiophenol: synthesis and structure of 1,5-benzothiazepines and 1,4-benzothiazines. Tetrahedron, 61, 6642–6651. DOI: 10.1016/j.tet.2005.03.035. http://dx.doi.org/10.1016/j.tet.2005.03.035 [CrossRef]

  • [21] Rao, D. M., Giridhar, T., Reddy, R. B.,& Mouli, G. V. P. C. (1995). A novel synthesis of benzothiazepines. Indian Journal of Heterocyclic Chemistry, 5, 145–148.

  • [22] Sindler-Kulyk, M., & Neckers, D. C. (1982). Photochemistry of 2-phenylbenzothiazole with ethoxyacetylene and ethoxypropyne. Synthesis of 1,5-benzothiazepines The Journal of Organic Chemistry, 47, 4914–4919. DOI: 10.1021/ jo00146a018. [CrossRef]

  • [23] Upadhyay, K. Manvar, A., Rawal, K., Joshi, S., Trivedi, J., Chaniyara, R., & Shah, A. (2012). Evaluation of structurally diverse benzoazepines clubbed with coumarins as Mycobacterium tuberculosis agents. Chemical Biology & Drug Design, 80, 1003–1008. DOI: 10.1111/j.1747-0285.2012.01436.x. http://dx.doi.org/10.1111/j.1747-0285.2012.01436.x [Web of Science] [CrossRef]

  • [24] Urbanski, M. J., Chen, R. H., Demarest, K. T., Gunnet, J., Look, R., Ericson, E., Murray, W. V., Rybczynski, P. J.,& Zhang, X. (2003). 2,5-Disubstituted 3,4-dihydro-2Hbenzo[b][1,4]thiazepines as potent and selective V2 arginine vasopressin receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 13, 4031–4034. DOI: 10.1016/j.bmcl.2003.08.051. http://dx.doi.org/10.1016/j.bmcl.2003.08.051 [Web of Science] [CrossRef]

  • [25] Yadav, J. S., Reddy, B. V. S., Eshwaraiah, B., & Anuradha, K. (2002). Amberlyst-15®: a novel and recyclable reagent for the synthesis of 1,5-benzodiazepines in ionic liquids. Green Chemistry, 4, 592–594. DOI: 10.1039/b206558b. http://dx.doi.org/10.1039/b206558b [CrossRef]

  • [26] Yang, X., Buzon, L., Hamanaka, E.,& Liu, K. K. C. (2000). Enzymatic resolution of benzothiazepine for the preparation of squalene synthetase inhibitors. Tetrahedron Asymmetry, 11, 4447–4450. DOI: 10.1016/s0957-4166(00)00458-4. http://dx.doi.org/10.1016/S0957-4166(00)00458-4 [CrossRef]

  • [27] Zhong, W., Chen, X.,& Zhang, Y. (2000). Low-valent titanium induced simultaneous reduction of nitro group and S-S bond in nitrodisulfides: A novel method for the synthesis of benzothiazoline, benzothiazoles and 2,3-dihydro-1,5-benzothiazepines. Synthetic Communications, 30, 4451–4460. DOI: 10.1080/00397910008087072. http://dx.doi.org/10.1080/00397910008087072 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pratima P. Mogle, Rahul D. Kamble, Shrikant V. Hese, and Bhaskar S. Dawane
Research on Chemical Intermediates, 2014
[2]
Gajanan G. Mandawad, Rahul D. Kamble, Shrikant V. Hese, Rahul A. More, Rajesh N. Gacche, Kisan M. Kodam, and Bhaskar S. Dawane
Medicinal Chemistry Research, 2014, Volume 23, Number 10, Page 4455
[3]
Milind V. Gaikwad, Rahul D. Kamble, Shrikant V. Hese, Ashok P. Acharya, Pratima P. Mogle, Shuddhodan N. Kadam, and Bhaskar S. Dawane
Research on Chemical Intermediates, 2015, Volume 41, Number 7, Page 4673

Comments (0)

Please log in or register to comment.