Jump to ContentJump to Main Navigation

Cellular and Molecular Biology Letters

Editor-in-Chief: /

4 Issues per year


Impact Factor 2014: 1.593
5-year IMPACT FACTOR: 1.647

SCImago Journal Rank (SJR) 2014: 0.670
Source Normalized Impact per Paper (SNIP) 2014: 0.620
Impact per Publication (IPP) 2014: 1.843

VolumeIssuePage

Genetic diversity of SIRE-1 retroelements in annual and perennial glycine species revealed using SSAP

1Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK

2School of Life-Sciences, University of Sussex, Brighton, BN1 9QG, UK

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 12, Issue 1, Pages 103–110, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-006-0054-y, November 2006

Publication History

Published Online:
2006-11-13

Abstract

Sequence Specific Amplification Polymorphisms (SSAP) were used to measure the distribution and structure of SIRE-1 retroelement populations in annual and perennial Glycine species. For SSAP analysis, primers corresponding to a region immediately upstream of the 3’LTR of the soybean retroelement SIRE-1 were chosen. Analysis reveals that SIRE-1 is present throughout the Glycine genus and shows that the annual species have similar SIRE-1 populations whilst the perennial species have much more distinct and diverse populations. The high number of species-specific subgroups suggest that SIRE-1 has been active and evolving independently in each species during the course of Glycine evolution.

Keywords: Glycine; Retroelement; SSAP; phylogeny; SIRE-1; copia

  • [1] Doyle, J.J., Doyle, J.L., Rauscher, J.T. and Brown, A.H.D. Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine) New Phytol. 161 (2003) 121–132. http://dx.doi.org/10.1046/j.1469-8137.2003.00949.x

  • [2] Ahrent, D.K. and Caviness, C.E. Natural cross-pollination of twelve soybean cultures in Arkansas. Crop Sci. 34 (1994) 376–378. http://dx.doi.org/10.2135/cropsci1994.0011183X003400020013x

  • [3] Hymowitz, T., Singh, R.J. and Kollipara, K.P. The genomes of Glycine. Plant Breed. Rev. 16 (1998) 289–317.

  • [4] Laten, H.M. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica 107 (1999) 87–93. http://dx.doi.org/10.1023/A:1003901009861

  • [5] Laten, H.M., Havecker, E.R. and Voytas, D.F. SIRE-1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol. Biol. Evol. 20 (2003) 1222–1230. http://dx.doi.org/10.1093/molbev/msg142

  • [6] Gribbon, B.M., Pearce, S.R., Kalendar, R., Schulman, A., Paulin, L., Jack, P., Kumar, A. and Flavell, A.J. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet. 261 (1999) 883–891. http://dx.doi.org/10.1007/PL00008635

  • [7] Pearce, S.R., Knox, M., Ellis, T.H.N., Flavell, A.J. and Kumar, A. Pea Ty1-copia group retrotransposons: Transpositional activity and use as molecular markers to study genetic diversity in Pisum. Mol. Gen. Genet. 263 (2000) 898–907. http://dx.doi.org/10.1007/s004380000257

  • [8] Tam, S.M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S.R. and Grandbastien, M-A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 110 (2005) 819–831. http://dx.doi.org/10.1007/s00122-004-1837-z

  • [9] Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, B.B.T. and Powell, W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence specific amplification polymorphisms (SSAP). Mol. Gen. Genet. 253 (1997) 687–694. http://dx.doi.org/10.1007/s004380050372

  • [10] Pearce, S.R., Stuart-Rogers, C., Kumar, A. and Flavell, A.J. Rapid isolation of plant Ty1-copia group retrotransposons LTR sequences for molecular marker studies. Plant J. 19 (1999) 1–7. http://dx.doi.org/10.1046/j.1365-313x.1999.00556.x

  • [11] Nei, M. and Takezaki, N. Estimation of genetic distances and phylogenetic trees from DNA analysis. Proc. 5 th World Cong. Genet. Appl. Livestock Prod. 21 (1983) 405–412.

  • [12] Liu, K. and Muse, S.V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21 (2005) 2128–2129. http://dx.doi.org/10.1093/bioinformatics/bti282

  • [13] Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (1985) 783–791. http://dx.doi.org/10.2307/2408678

  • [14] Peterson-Burch, B.D., Wright, D.A., Laten, H.M. and Voytas, D.F. Retroviruses in plants? Trends Genet. 16 (2000) 151–152. http://dx.doi.org/10.1016/S0168-9525(00)01981-8

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
B. Cakmak, S. Marakli, and N. Gozukirmizi
Russian Journal of Genetics, 2015, Volume 51, Number 7, Page 661
[2]
Ahmed M. Alzohairy, Gábor Gyulai, Mohamed F. Ramadan, Sherif Edris, Jamal S. M. Sabir, Robert K. Jansen, Hala F. Eissa, and Ahmed Bahieldin
Functional Plant Biology, 2014, Volume 41, Number 8, Page 781
[3]
Sungyul Chang, Glen L. Hartman, Ram J. Singh, Kris N. Lambert, Houston A. Hobbs, and Leslie L. Domier
Theoretical and Applied Genetics, 2013, Volume 126, Number 6, Page 1627
[4]
Alexandros Bousios, Evangelia Minga, Nikoleta Kalitsou, Maria Pantermali, Aphrodite Tsaballa, and Nikos Darzentas
BMC Genomics, 2012, Volume 13, Number 1, Page 158

Comments (0)

Please log in or register to comment.