Jump to ContentJump to Main Navigation

Cellular and Molecular Biology Letters

Editor-in-Chief: /

4 Issues per year


Impact Factor 2014: 1.593
5-year IMPACT FACTOR: 1.647

SCImago Journal Rank (SJR) 2014: 0.670
Source Normalized Impact per Paper (SNIP) 2014: 0.620
Impact per Publication (IPP) 2014: 1.843

VolumeIssuePage

The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis

1Faculty of Horticulture and Landscape Architecture, Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland

2Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya, 467-8501, Japan

© 2007 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 12, Issue 4, Pages 584–594, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-007-0029-7, July 2007

Publication History

Published Online:
2007-07-03

Abstract

The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.

Keywords: Organelle; Gene order

  • [1] Havey, M.J., Lilly, J.W., Bohanec, B., Bartoszewski, G. and Malepszy, S. Cucumber: A model angiosperm for mitochondrial transformation? J. Appl. Genet. 43 (2002) 1–17.

  • [2] Kolodner, R. and Tewari, K. Molecular size and conformation of chloroplast deoxyrybonucleic acid from pea leaves. J. Biol. Chem. 247 (1972) 6355–6364.

  • [3] Kolodner, R. and Tewari, K. Inverted repeats in chloroplast DNA from higher plants. Proc. Natl. Acad. Sci. USA 76 (1979) 41–45. http://dx.doi.org/10.1073/pnas.76.1.41 [CrossRef]

  • [4] Deng, X.W., Wing, R.A. and Gruissem, A. The chloroplast genome exists in multimeric forms. Proc. Natl. Acad. Sci. USA 86 (1989) 4156–4160. http://dx.doi.org/10.1073/pnas.86.11.4156 [CrossRef]

  • [5] Lilly, J.W., Havey, M.J., Jackson, S.A. and Jiang, J. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13 (2001) 245–254. http://dx.doi.org/10.1105/tpc.13.2.245 [CrossRef]

  • [6] Hoshi, Y., Plader, W. and Malepszy, S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breed. 117 (1998) 77–82. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01452.x [CrossRef]

  • [7] De Nisi, P. and Zocchi, G. Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J. Exp. Biol. 51 (2000) 1903–1909.

  • [8] Hirano, T., Kiyota, M. and Aiga I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 89 (1995) 255–261. http://dx.doi.org/10.1016/0269-7491(94)00075-O [CrossRef]

  • [9] Burza, W. and Malepszy, S. Direct plant regeneration from leaf explants in cucumber (C. sativus sativus L.) is free of stable genetic variation. Plant Breed. 114 (1995a) 341–345. http://dx.doi.org/10.1111/j.1439-0523.1995.tb01246.x [CrossRef]

  • [10] Wróblewski, T., Filipecki, M.K. and Malepszy, S. Factors influencing cucumber (C. sativus sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture. Acta Soc. Bot. Pol. 64 (1995) 223–231.

  • [11] Burza, W. and Malepszy, S. In vitro culture of C.sativus sativus L. XVIII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell Tissue Organ Cult. 41 (1995b) 259–266. http://dx.doi.org/10.1007/BF00045090 [CrossRef]

  • [12] Yin, Z. and Malepszy, S. The transgenes are expressed with different level in plants. Biotechnologia 2 (2003) 236–260.

  • [13] Yin, Z., Plader, W. and Malepszy, S. Transgene inheritance in plants. J. Appl. Genet. 45 (2004) 127–144.

  • [14] Havey, M.J., Lilly, J.W., Bohanec, B., Bartoszewski, G. and Malepszy, S. Cucumber: a model angiosperm for mitochondrial transformation? J. Appl. Genet. 43 (2002) 1–17.

  • [15] Palmer, J.D. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and C. sativus sativa. Nucleic Acid Res. 10 (1982) 1593–1605. http://dx.doi.org/10.1093/nar/10.5.1593 [CrossRef]

  • [16] Kim, J.S., Jung, J.D., Lee, J.A., Park, H.W., Oh, K.H., Jeong, W.J., Choi, D.W., Liu, J.R. and Cho, K.Y. Complete sequence and organization of the cucumber (C. sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell. Rep. 25 (2006) 334–340. http://dx.doi.org/10.1007/s00299-005-0097-y [CrossRef]

  • [17] Cheng, M.C., Wu, S.P., Chen, L.F. and Chen, S.C. Identification and purification of a spinach chloroplast DNA-binding protein that interacts specifically with the plastid psaA-psaB-rps14 promoter region. Planta 203 (1997) 373–380. http://dx.doi.org/10.1007/s004250050203 [CrossRef]

  • [18] Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chungwonse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5 (1986) 2043–2049.

  • [19] Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673 [CrossRef]

  • [20] Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. and Miller, W. PipMaker-a web server for aligning two genomic DNA sequences. Genome Res. 10 (2000) 577–586. http://dx.doi.org/10.1101/gr.10.4.577 [CrossRef]

  • [21] Maier, R.M., Neckermann, K., Igloi, G.L. and Kossel, H. Complete sequence of the maize chloroplast genome: gene content. hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251 (1995) 614–628. http://dx.doi.org/10.1006/jmbi.1995.0460 [CrossRef]

  • [22] Kim, K.J. and Lee, H.L. Complete chloroplast genome sequence from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11 (2004) 247–261. http://dx.doi.org/10.1093/dnares/11.4.247 [CrossRef]

  • [23] Kim, K.J. and Lee, H.L. Widespread occurance of small inversions in the chloroplast genomes of land plants. Mol. Cells 19 (2005) 104–113.

  • [24] Palmer, J.D. Plastid chromosomes: structure and evolution In: Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular Biology of Plastids (Vasil, I.K. and Bogorad, L. Eds.), Academic Press, San Diego, 1991, 5–53.

  • [25] Kelchner, S.A. and Wende, J.F. Hairpins create minute inversions in noncoding regions of chloroplast DNA. Curr. Genet. 30 (1996) 259–262. http://dx.doi.org/10.1007/s002940050130 [CrossRef]

  • [26] Shinozaki, K., Hayashida, N. and Sugiura, M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynthesis Res. 18 (1988) 7–31. http://dx.doi.org/10.1007/BF00042978 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hongyu Chen, Ying Yu, Xiuling Chen, Zhenzhu Zhang, Chao Gong, Jingfu Li, and Aoxue Wang
Functional & Integrative Genomics, 2015, Volume 15, Number 2, Page 131
[2]
L. Kistler, A. Montenegro, B. D. Smith, J. A. Gifford, R. E. Green, L. A. Newsom, and B. Shapiro
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 8, Page 2937
[3]
T. Yoshida, H. Y. Furihata, and A. Kawabe
DNA Research, 2014, Volume 21, Number 2, Page 127
[4]
Agnieszka Żmieńko, Magdalena Guzowska-Nowowiejska, Radosław Urbaniak, Wojciech Pląder, Piotr Formanowicz, and Marek Figlerowicz
Plant Methods, 2011, Volume 7, Number 1, Page 29
[5]
Magdalena Guzowska-Nowowiejska, Ewa Fiedorowicz, and Wojciech Pląder
Gene, 2009, Volume 434, Number 1-2, Page 1
[6]
Luis Rodríguez-Moreno, Víctor M González, Andrej Benjak, M Carmen Martí, Pere Puigdomènech, Miguel A Aranda, and Jordi Garcia-Mas
BMC Genomics, 2011, Volume 12, Number 1, Page 424
[7]
Zhi-Yong Hu, Wei Hua, Shun-Mou Huang, and Han-Zhong Wang
Genetic Resources and Crop Evolution, 2011, Volume 58, Number 6, Page 875
[8]
Thomas J. Givnish, Mercedes Ames, Joel R. McNeal, Michael R. McKain, P. Roxanne Steele, Claude W. dePamphilis, Sean W. Graham, J. Chris Pires, Dennis W. Stevenson, Wendy B. Zomlefer, Barbara G. Briggs, Melvin R. Duvall, Michael J. Moore, J. Michael Heaney, Douglas E. Soltis, Pamela S. Soltis, Kevin Thiele, and James H. Leebens-Mack
Annals of the Missouri Botanical Garden, 2010, Volume 97, Number 4, Page 584
[9]
Henry Daniell, Kenneth J. Wurdack, Anderson Kanagaraj, Seung-Bum Lee, Christopher Saski, and Robert K. Jansen
Theoretical and Applied Genetics, 2008, Volume 116, Number 5, Page 723

Comments (0)

Please log in or register to comment.