Jump to ContentJump to Main Navigation

Cellular and Molecular Biology Letters

Editor-in-Chief: /

4 Issues per year


Impact Factor 2013: 1.782

SCImago Journal Rank (SJR): 0.673
Source Normalized Impact per Paper (SNIP): 0.530

VolumeIssuePage

The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae

1Liaoning University

2Yamaguchi University

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 13, Issue 4, Pages 621–631, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-008-0026-5, October 2008

Publication History

Published Online:
2008-10-17

Abstract

In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced level of BiP mRNA in the ER was evidently higher in calnexin-disrupted S. cerevisiae than in the wild-type at 37°C, but was almost the same in the two strains under normal conditions. The Western blot analysis results for BiP protein expression in the ER showed a parallel in the mRNA levels in the two strains. It is suggested that under heat stress conditions, the induction of BiP in the ER might recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.

Keywords: Calnexin; Molecular chaperone; BiP; Heat stress

  • [1] Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J.M. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364 (1993) 771–776. http://dx.doi.org/10.1038/364771a0 [CrossRef]

  • [2] Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19 (1994) 124–128. http://dx.doi.org/10.1016/0968-0004(94)90205-4 [CrossRef]

  • [3] Letourneur, O., Sechi, S., Willete-Brown, J., Robertson, M.W. and Kinet J.P. Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270 (1995) 8249–8256. http://dx.doi.org/10.1074/jbc.270.14.8249 [CrossRef]

  • [4] Degen, E., Cohen-Doyle, M.F. and Williams, D.B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2-microglobulin and peptide. J. Exp. Med. 175 (1992) 1653–1661. http://dx.doi.org/10.1084/jem.175.6.1653 [CrossRef]

  • [5] Hammond, C., Braakman, I. and Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91 (1994) 913–917. http://dx.doi.org/10.1073/pnas.91.3.913 [CrossRef]

  • [6] Jackson, M.R., Cohen-Doyle, M.F., Peterson, P. A. and Williams, D.B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263 (1994) 384–387. http://dx.doi.org/10.1126/science.8278813 [CrossRef]

  • [7] Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270 (1995) 4697–4704. http://dx.doi.org/10.1074/jbc.270.9.4697 [CrossRef]

  • [8] Parlati, F., Dominguez, M., Bergeron, J.M. and Thomas, D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270 (1995) 244–253. http://dx.doi.org/10.1074/jbc.270.1.244 [CrossRef]

  • [9] Jakob, C.A., Burda, P. S., te Heesen, S., Aebi, M. and Roth, J. Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8 (1998) 155–164. http://dx.doi.org/10.1093/glycob/8.2.155 [CrossRef]

  • [10] Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920. http://dx.doi.org/10.1074/jbc.273.16.9912 [CrossRef]

  • [11] Shahinian, S., Dijkgraaf, G.J.P., Sdicu, A.M., Thomas, D.Y., Jakob, C.A., Aebi, M., and Bussey, H. Involvement of Protein N-Glycosyl Chain Glucosylation and Processing in the Biosynthesis of Cell Wall-1,6-Glucan of Saccharomyces cerevisiae. Genetics 149 (1998) 843–856. [Web of Science]

  • [12] Denzel, A., Molinari, M., Trigueros, C., Martin, J.E., Velmurgan, S., Brown, S., Stamp, G. and Owen, M.J. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol. Cell Biol. 22 (2002) 7398–7404. http://dx.doi.org/10.1128/MCB.22.21.7398-7404.2002 [CrossRef]

  • [13] Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H. and Akio, K. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem. 130 (2001) 757–764.

  • [14] Zhang, H., He, J., Ji, Y., Kato, A. and Song, Y. The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell Mol. Biol. Lett. 13 (2007) 38–48. http://dx.doi.org/10.2478/s11658-007-0033-y [CrossRef] [Web of Science]

  • [15] Stronge, V.S., Saito, Y., Ihara, Y. and Williams, D.B. Relationship between calnexin and BiP in duppressing aggregation and promoting refolding of protein and glycoprotein substrates. J. Biol. Chem. 276 (2001) 39779–39787. http://dx.doi.org/10.1074/jbc.M107091200 [CrossRef]

  • [16] Choukhi, A.L., Ung, S., Wychowski, C. and Dubuisson, J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis c virus glycoproteins. J. Virol. 72 (1998) 3851–3858.

  • [17] Lith, M.V., Karala, A.R., Bown, D., Gatehouse, J.A., Ruddock, L.W., Saunders, PTK, and Benham., A.M. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol. Biol. Cell. 18 (2007) 2795–2804. http://dx.doi.org/10.1091/mbc.E07-02-0147 [Web of Science] [CrossRef]

  • [18] Fourn, V.L., Fernandez, S.S., Ferrand, M. and Franc, J.L. Competition between calnexin and BiP in the endoplasmic reticulum can lead to the folding or degradation of human thyroperoxidase. Biochemistry 45 (2006) 7380–7388. http://dx.doi.org/10.1021/bi060415i [CrossRef]

  • [19] Lee, W., Kim, K.R., Singaravelu, G., Park, B-J., Kim, D.H., Ahnn, J. and Yoo, Y.J. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 6 (2006) 1329–1339. http://dx.doi.org/10.1002/pmic.200500320 [CrossRef]

  • [20] Siebert, P.D. and Larrick, J.W. Competitive PCR. Nature 359 (1992) 557–558. http://dx.doi.org/10.1038/359557a0 [CrossRef]

  • [21] Rose, M.D., Misra, L.M. and Vogel, J.P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57 (1989) 1211–1221. http://dx.doi.org/10.1016/0092-8674(89)90058-5 [CrossRef]

  • [22] Lamantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88 (1991) 4453–4457. http://dx.doi.org/10.1073/pnas.88.10.4453 [CrossRef]

  • [23] Arima, H., Kinoshita, T., Ibrahim H.R., Azakami, H. and Kato, A. Enhanced secretion of hydrophobic peptide fused lysozyme by the introduction of N-glycosylation signal and the disruption of calnexin gene in Saccharomyces cerevisiae. FEBS Lett. 440 (1998) 89–92. http://dx.doi.org/10.1016/S0014-5793(98)01437-9 [CrossRef]

  • [24] Brodsky, J.L. and Schekman, R. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (Marimoto RI, Tissieres A and Georgopoulos C), (1994) pp. 85–109.

  • [25] MinHee, K.K. and EunDuck, P.K. Differential interaction of molecular chaperones with procollagen I and type IV collagen in corneal endothelial cells. Mol. Vis. 8 (2002) 1–9.

Comments (0)

Please log in or register to comment.