Vertebrate melanophores as potential model for drug discovery and development: A review : Cellular and Molecular Biology Letters Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

99,00 € / $149.00 / £75.00*

See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Vertebrate melanophores as potential model for drug discovery and development: A review

1Saifia College of Science Bhopal

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 16, Issue 1, Pages 162–200, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-010-0044-y, January 2011

Publication History

Published Online:


Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.

Keywords: G-protein-coupled receptors; Melanocytes; Skin pigmentation; Neurotransmitter; Pigment cells; Melanocyte-stimulating hormone; MSH; Drug discovery

  • [1] Rawles, M.E. Origin of melanophores and their role in the color patterns in vertebrates. Physiol. Rev. 28 (1948) 383–408.

  • [2] Bagnara, J.T., Bareiter, H. J., Matoltsy, A.G. and Richards, K.S. Biology of the integument vertebrates. Berlin: Springer-Verlag. 2 (1986) 136–149.

  • [3] Slominski, A., Desmond, J.T., Shibahara, S. and Wortman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84 (2004) 1155–1228. [CrossRef]

  • [4] Slominski, A., Wortsman, J., Plonka, P.M., Schallreuter, K.U., Paus, R. and Tobin, D.J. Hair follicle pigmentation. J. Invest. Dermatol. 124 (2005) 13–21. [CrossRef]

  • [5] Slominski, A. and Paus, R. Melanogenesis is coupled bto murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J. Invest. Dermatol. 101 (1993) 90S–97S. [CrossRef]

  • [6] Frisch, V.K., Beitrage zur Physiologic der Pigmentsellen in der Fischhaut. Pflugers Arch. Gesante Physiol. Menschen Tiere 138 (1911) 319–387. [CrossRef]

  • [7] Parker, G.H. Animal colour changes and their neurohumors. Cambridge Univ. Press, Cambridge, U.K., 1948.

  • [8] Pye, J.D. Nervous control of chromatophores in teleost fishes. I. Electrical stimulation in mimmow, Phoxinus phoxinus. J. Exp. Biol. 41 (1964a) 525–534.

  • [9] Fujii, R. Cytophysiology of fish chromatophores. Int. Rev. Cytol. 143 (1993a) 191–255. [CrossRef]

  • [10] David, M.J. and Laties, A.M. Direct innervations of teleost melanophore. Anat. Rec. 162 (2004) 501–504.

  • [11] Pouchet, G. Color changes in crustaceans and fishes. J. Anat. Physiol. 12 (1876) 1–90, 113–116.

  • [12] Brücke, E. Untersuchungen uber den Farbenwechsel des afrikanischen Chamaleons. Denschr. Akad. Wiss. Wien, math-nat. Cl. 4 (1852) 179–210.

  • [13] Bagnara, J.T. and Hadley, M.E. Chromatophores and color changes. Englewood Cliffs, N.J. Prentice-Hall, 1973.

  • [14] Gillbro, J.M, Marles, L.K., Hibberts, N.A. and Schallreuter, K.U. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J. Invest. Dermatol. 123 (2004) 346–353. [CrossRef]

  • [15] Fujii, R. and Miyashita, Y. Receptor mechanisms in fish chromatophores-V. MSH disperses melanosomes in both dermal and epidermal melanophores of a catfish (Parasilurus asotus). Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 71 (1981) 1–6. [CrossRef]

  • [16] Vaudry, H., Chartrel. N., Desrues, L., Galas, L., Kikuyama, S., Mor, A., Nicolas, P. and Tonan, M.C. Pituitary-skin connection in amphibians: reciprocal regulation of melanotrope cells and dermal melanocytes. Ann. N. Y. Acad. Sci. 885 (1999) 41–56. [CrossRef]

  • [17] Slominski, A., Wortsman, J., Kohn, L., Ain, K.B., Venkataraman, G.M., Pisarchik, A., Chung, J.H., Giuliani, C., Thornton, M., Slugocki, G. and Tobin, D.J. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin, J. Invest. Dermatol. 119 (2002) 1449–1455. [CrossRef]

  • [18] Slominski, A. and Wortsman, J. Neuroendocrinology of the skin. Endocrine Rev. 21 (2000) 457–487. [CrossRef]

  • [19] Matsunaga, T.O., Hruby, V.J., Lebl, M., Castrucci, A.M. and Hadley, M.E. Melanin concentrating hormone (MCH): structure-function aspects of its melanocyte stimulating hormone-like (MSH-like) activity. Peptides 10 (1989) 773–778. [CrossRef]

  • [20] Hogben, L.T. and Winton, LXIII. Studies on the pituitary I. The melanophore stimulant in posterior lobe extracts. Proc. Roy. Soc. B. 93 (1924) 318. [CrossRef]

  • [21] Slominski, A., Wortsman, J., Luger, T., Paus, R. and Soloman, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80 (2000) 979–1020.

  • [22] Fujii, R. and Novales, R. Cellular aspects of the control of physiological color changes in fishes. Integr. Comp. Biol. 9 (1969) 453–463. [CrossRef]

  • [23] Novales, R.R. Cellular aspects of hormonally controlled translocation within chromatophores of poikilothermic vertebrates. Soc. Integr. Comp. Biol. 23 (1983) 559–568. [CrossRef]

  • [24] Fuiji, R. and Oshima, N. Factors influencing motile activities of fish melanophores. Adv. Comp. Env. Physiol. 20 (1994) 1–52.

  • [25] Fujii, R. The regulation of mobile activity in fish chromatophores. Pigment Cell Res. 13 (2000) 300–319. [CrossRef]

  • [26] Fujii, R. Chromatophores and pigments in fish physiology. (Hoar, W.H. and Randall, D.J. Eds) Vol. III. Academic Press, N.Y. 1969, 307–353.

  • [27] Slominski, A., Paus, R. and Schadendorf, D. Melanocytes as “sensory” and regulatory cells in the epidermis. J. Theor. Biol. 164 (1993) 103–120. [CrossRef]

  • [28] Slominski, A. Neuroendocrine activity of the melanocyte. Exp. Dermatol. 18 (2009) 760–763. [CrossRef]

  • [29] Slominski, A., Wortsman, J., Paus, R., Elias, P.M., Tobin, D. and Feingold, K. Skin as an endocrine organ: implications for its function. Drug Dis. Today: Dis. Mech. 5 (2008) e137–e144. [CrossRef]

  • [30] Spaeth, R.A. and Barbour, H.G. Responses of fish melanophores to sympathetic and parasympathetic stimulates and depressants. J. Pharmacol. Exp. Ther. 9 (1917) 356–357.

  • [31] Fujii, R. and Miyashita, Y. Receptor mechanism in fish chromatophores I. Alpha nature of adrenoceptors mediating mechanism aggregation in guppy melanophores. Comp. Biochem. 5IC (1975) 171–178. [CrossRef]

  • [32] Breder, C.M. Jr. and Rasquin, P. Further notes on pigmentary behavior of Chaetodipterus in reference to background and water transparency. Zoologica 40 (1955) 85–90.

  • [33] Enami, M. Melanophore concentrating hormone (MCH) of possible hypothalamic origin in the catfish, Parasilurus. Science 121 (1955) 36–37. [CrossRef]

  • [34] Rasquin, P. Studies on the control of pigment cells and light reactions in recent teleost fishes. Bull. Am. Mus. Nat. Hist. 115 (1958) 1–68.

  • [35] Watanabe, M., Kobayashi, and Iwata, K.S. The action of adrenaline on melanophores of Oryzias, with special reference to its pigment dispersion action. Biol. J. Okayama Uni. 8 (1962b) 95–102.

  • [36] Umrath, K. Uber den physiologischen und den morphologischen Farbwechsel des Bitterlings, Rhodeus amarus. Z. Vgl. Physiol. 40 (1957) 321–328. [CrossRef]

  • [37] Fujii, R. Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokyo, Sect. IV, 9 (1961) 171–196.

  • [38] Fange, R. Pharmacology of poikilothermic vertebrates. Pharmacol. Rev. 14 (1962) 281–316.

  • [39] Scheline, R.R. Adrenergic mechanisms in fish: Chromatophore pigment concentration in the cuckoo wrasse, Labrus ossifagus L. Comp. Biochem. Physiol. 16 (1963) 215–27.

  • [40] Ali, S.A. Physiology and pharmacology of melanophores of a teleost fish, Channa punctatus. Ph. D Thesis, Bhopal University, Bhopal, 1983.

  • [41] Martensson, L.G.E, Warmlander, S. and Hildebrand, C. Nor-adrenaline induced pigment aggregation response of melanophores in normal, denervated and reinnervated cichlid skin. Neurosci. Lett. 275 (1999) 113–116. [CrossRef]

  • [42] Aspengren, S., Skold, S.K., Quiroga, G., Martensson, L. and Wallin, M. Noradrenaline and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res. 16 (2003) 59–64. [CrossRef]

  • [43] Reed, B. and Finnen, B. Adrenergic innervations of melanophores in teleost fish in pigmentation: Its genesis and biologic control (Riley, V. Ed). Appleton, N.Y publisher, 1972, 285–294.

  • [44] Holmgren, S. and Nilsson, S. Neuropharmacology of adrenergic neurons in teleost fish. Comp. Biochem. Physiol. C. 72 (1982) 289–302. [CrossRef]

  • [45] Judy, L., Morris, I. and Gibbins, L. Autonomic Innervation of the Skin 1997.

  • [46] Ahlquist, R.P. A study of adrenotropic receptors. Am. J. Physiol. 153 (1948) 586–600.

  • [47] Langer, S.Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23 (1974) 1793–1800. [CrossRef]

  • [48] Lands, A.M., Luduena, F.P. and Buggo, H.J. Differentiation of receptors responsive to isoproterenol. Life Sci. 6 (1967) 2241. [CrossRef]

  • [49] Iga, T. Action of catecholamines on the melanophores in the teleost fish Oryzias latipes. Zoolog. Mag. 77 (1968) 19–26.

  • [50] Burton, D. Spinal pigmentomotor tract of the minnow (Phoxinus phoxinus L.) Nature 201 (1964) 1149.

  • [51] Andersson, R.G.G., Karlsson, J.O. and Grundstrom, M.N. Adrenergic nerves and the alpha 2 adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol. Scand. 121 (1984) 173–179. [CrossRef]

  • [52] Morishita, F. Responses of the melanophores of medaka, Oryzias latipes, to adrenergic drugs: Evidence for involvement of alpha 2 adrenergic receptors mediating melanosome aggregation. Comp. Biochem. Physiol. Part C: Comp. Pharm. 88 (1987) 69–74. [CrossRef]

  • [53] Iga, T., Takabatake I. and Watanabe, S. Nervous regulation of motile iridophores of a freshwater goby, Odontobutis obscura. Comp. Biochem. Physiol. 88 (1987) 319–324. [CrossRef]

  • [54] Fuji, R. and Miyashita, Y. Responses of guppy melanophores to 5-hydroxy tryptamin. J. Pre-Med. 14 (1973) 34–44.

  • [55] Abbott, F.S. The effects of certain and biogenic substances on the melanophores of Fundulus heteroclitus. L. Can. J. Zool. 46 (1968) 1149–1161. [CrossRef]

  • [56] Acharya, L.S.K. and Ovais, M. α1 and β2 adrenoceptors mediated aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Ind. J. Exp. Biol. 45 (2007) 984–991.

  • [57] Amiri, M.H. Post synaptic alpha 2 adrenoceptors mediate melanophores aggregation in melanophores of white spotted rabbitfish (Siganis canaliculatus). Pak J. Biol. Sci. 12 (2009) 1–10. [CrossRef]

  • [58] Burton, D. and Vokey, J.E. alpha 1 and alpha 2 adrenoceptor mediation in melanosome aggregation in cryptic patterning of Pleuronectes americanus. Comp. Biochem. Physiol. Part A: Mol. Physiol. 125 (2000) 359–365. [CrossRef]

  • [59] Fujii, R. and Miyashita Y. Beta adrenoceptors, cyclic-AMP and melanosomes dispersion in guppy melanophores. Pigment Cell 3 (Riley, V. Ed.), 1975, 336–344.

  • [60] Fujii, R., Oshima, N. and Miyashita, Y. Receptor mechanisms in fish chromatophores — VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores. Comp. Biochem. Physiol. C. 81 (1985) 1–6.

  • [61] Komatsu, K. and Yamada, K. Autoradiographic visualization of beta adrenergic receptors in fish melanophores. J. Exp. Zoolog. 223 (1995) 185–188. [CrossRef]

  • [62] Katayama, H., Morishita, F., Matsushima, O. and Fujimoto, M. Beta-adrenergic receptor subtypes in melanophotres of marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus. Pigment Cell Res. 12 (1999) 206–217. [CrossRef]

  • [63] Morishita, F., Katayama, H. and Yamada, K. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of medaka, Oryzias latipes. Comp. Biochem. Physiol. C 81 (1985) 279–285. [CrossRef]

  • [64] Kasukawa, H. and Fujii, R. Receptor mechanism in fish chromatophores — VII. Muscarinic cholinoceptors and alpha adrenoceptors both mediating pigment aggregation, strangely co exist in Corydoras melanophores. Comp. Biochem. Physiol. C. 80 (1985) 211–215. [CrossRef]

  • [65] Wright, M.R. and Lerner, A.B. On the movement of pigment granules in frog melanocytes. Endocrinology 66 (1960) 599–609. [CrossRef]

  • [66] Burgers, A.C. J., Boschman, Th. A. C. and Van de Kamer, J.C. Excitement darkening and the effects of adrenaline on the melanophores of Xenopus laevis. Acta Endocrinol. 4 (1953) 72–82.

  • [67] Goldman, J.M. and Hadley, M. E. The beta adrenergic receptor and cyclic 3′,5′adenosine monophosphate: Possible roles in the regulation of melanophores responses of spadefoot toad Scaphiopus couchi. Gen. Comp. Endocrinol. 13 (1969) 151–163.

  • [68] Lerner, A.B., Shizume, K. and Bunting, I. The mechanism of endocrine control of melanin pigmentation. J. Clin. Endocrinol. Metab. 14 (1954) 1463–1490. [CrossRef]

  • [69] Novales, R.R. and Novales, B.J. The effects of osmotic pressure and calcium deficiency on the responses of tissue cultured melanophores to melanocyte stimulating hormone. Gen. Comp. Endocrinol. 5 (1965) 568–576. [CrossRef]

  • [70] Graham, J.D.P. The response to catecholamines of melanophores of Xenopus laevis J. Physiol. 158 (1961) 5–6.

  • [71] Novales, R.R. and Davis, W.J. Cellular aspects of the control of physiological colour changes in amphibians. Am. Zool. 9 (1969) 479–488.

  • [72] Ferroni, E.N. and Castrucci, A.M. A sensitive in vitro bioassay for melanotropic peptides. Braz. J. Biol. Res. 20 (1987) 213–220.

  • [73] Greenberg, N. and Crews, D. Endocrine and behavioral responses to aggression and social dominance in the green anole lizard, Anolis carolinensis. Gen. Compar. Endocrinol. 77 (1990) 1–10. [CrossRef]

  • [74] Kleinholz, L.H. Studies in reptilian color change III. Control of light phase and behavior of isolated skin. J. Exp. Zoolog. 15 (1938b) 492–499.

  • [75] Kleinholz, L.H. Studies in reptilian color change II. The pituitary and adrenal glands in the regulation of the melanophores of Anolis carolinensis. J. Exp. Zoolog. 15 (1938a) 474–491.

  • [76] Jenssen, T.A., Greenberg, N. and Hovde, K.A. Behavioral profile of freeranging male Anolis carolinensis across breeding and post-breeding seasons. Herpetological Monographs 9 (1995) 41–62. [CrossRef]

  • [77] Goldman, J.M. and Hadley, M.E. In vitro demonstration of adrenergic receptors controlling melanophore responses of the lizard, Anolis carolinensis. J. Pharmacol. Exp. Ther. 166 (1970) 1–7.

  • [78] Ovais, M., and Ali, S.A. Effect of autonomic drugs on the isolated melanophores of wall lizard. Hemidactylus flaviviridis. Curr. Sci. 5 (1984) 303–306.

  • [79] Gordon, P.R. and Gilchrest, B.A. Human melanogenesis is stimulated by diacylglycerol. J. Invest. Dermatol. 93 (1989) 700–702. [CrossRef]

  • [80] Park, H.Y., Lee, J., Gonzalez, S., Middelkamp-Hup, M.A., Kapasi, S. and Peterson, S. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J. Invest. Dermatol. 122 (2004) 159–166. [CrossRef]

  • [81] Schallreuter, K.U. and Wood, J.M. The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem. Biophys. Res. Commun. 262 (1999) 423–428. [CrossRef]

  • [82] Schallreuter, K.U., Korner, C., Pittelkow, M.R., Swanson, N. and Gardner, M.L.G. The induction of the α-1 adrenoceptor signal transduction system on human melanocytes. Exp. Dermatol. 5 (1996) 20–23.

  • [83] Schallreuter, K.U. Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J. Investig. Dermatol. Symp. Proc. 1 (1997) 37–40.

  • [84] Role, L.W. and Berg, D.K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16 (1996) 1077–1085. [CrossRef]

  • [85] Robertson, O.H. Factors influencing the state of dispersion of the dermal melanophores in Rainbow trout. Univ. of Chicago Press. Physiol. Zool. 24 (1951) 309–323.

  • [86] Reidinger, L. and Umrath K. Die parasympathetikolytische and parasympathikomimethieche wirking des Atropins auf die chromatophoren. Z. Vgl. Physiol. 34 (1952) 373–378.

  • [87] Ando, S. Note on the type of the mechanism of the colour change in the medaka, Oryzias latipes. Annot. Zool. Jpn. 33 (1960) 33–36.

  • [88] Green, L. Mechanism of movement of granules in melanocytes of Fundulus heteroclitus. Proc. Nat. Acad. Sci. USA 59 (1968) 1179–1189. [CrossRef]

  • [89] Smith, D.C. and Smith, M.T. Observations on the melanophores of Scorpaena ustulata. Biol. Bull. Woods Hole 67 (1934) 45–58. [CrossRef]

  • [90] Parker, G.H. Color change in echinoderms. Proc. Nat. Acad. Sci. USA 17 (1931) 594–596. [CrossRef]

  • [91] Scott, G.T. Physiology and pharmacology of color change in the sand flounder Scopthalamus aquosus. Limnol. Oceanogr. 10 (1965) 230–246.

  • [92] Castrucci, A.M.L. Chromatophores of the teleost Tilapia melanopleura II. The effects of chemical mediators, microtubule-disrupting drugs and ouabain. Comp. Biochem. Physiol. Part A: Physiol. 50 (1973) 457–462. [CrossRef]

  • [93] Healy, E.G. and Ross, D.M. The effects of drugs on the background color response of the minnow, Phoxinus phoxinus L. Comp. Biochem. Physiol. 19 (1966) 545–580. [CrossRef]

  • [94] Fujii, R. and Miyashita, Y. Receptor mechanism in fish melanophores-III neutrally controlled melanosome aggregation in a siluroid (Palasilurus asotus) is strangely mediated by cholinoceptors. Comp. Biol. Physiol. 55C (1976) 43–49.

  • [95] Fujii, R., Miyashita, Y. and Fujii, Y. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J. Neural. Transm. 54 (1982) 29–39. [CrossRef]

  • [96] Hayashi, H. and Fujii, R. Muscarinic cholinoceptors that mediate pigment aggregation are present in the melanophores of cyprinids (Zacco spp.). Pigment Cell Res. 6 (1993) 37–44. [CrossRef]

  • [97] Ovais, M. and Gorakh, A.K. Adrenergic and cholinergic receptors in the isolated scale melanophores of a teleostean fish Cirrhinus mrigala (Ham.) Asian J. Exp. Sci. 4 (1988) 36–34.

  • [98] Ovais, M. Control of melanophore movements in isolated skin melanophores of a catfish Clarius batrachus (Linn.). Indian J. Physiol. Pharmac. 38 (1994) 185–188.

  • [99] Moller, H. and Lerner, A.B. Melanocyte stimulating hormone inhibition by acetylcholine and noradrenaline in the frog skin bioassay. Acta Endocrinol. 51 (1966) 149–160.

  • [100] Bhattacharya, S.K., Parikh, A.K. and Das, P.K. Effect of acetylcholine on melanophores of Rana tigerina. Experientia 32 (1976) 1039–1040. [CrossRef]

  • [101] Ali, A.S., Peter, J. and Ali, S.A. Role of cholinergic receptors in melanophore responses of amphibians. Acta Biol. Hung. 46 (1995) 61–73.

  • [102] Garnier, M., Lamacz, M., Galas, L., Lenglet, S., Tonon, M-C. and Vaudry, H. Pharmacological and functional characterization of muscarinic receptors in the frog pars intermedia. Endocrinology 139 (1998) 3525–3533. [CrossRef]

  • [103] Grando, S.A., Pittelkow, M.R. and Schallreuter, K.U. adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126 (2006) 1948–1965. [CrossRef]

  • [104] Buchli, R., Ndoye, A., Arredondo, J., Webber, R.J. and Grando, S.A. Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol. Cell. Biochem. 228 (2001) 57–72. [CrossRef]

  • [105] Kurzen, H.L., Wessler, C.J., Kirkpatrick, K., Kawashima and Grando, S.A. The non neuronal cholinergic system in human skin. Horm. Metab. Res. 39 (2007) 125–135. [CrossRef]

  • [106] Iyengar, B. Modulation of melanocytic activity by acetylcholine. Acta Anat. (Basel) 136 (1989) 139–141. [CrossRef]

  • [107] Wallstrom, M., Sand, L., Nilsson, F. and Hirsch, J.M. The long term effect of nicotine on the oral mucosa. Addiction 94 (1999) 417–423. [CrossRef]

  • [108] Fujii, R. Coloration and chromatophore. In: The physiology of fishes. (Evans, D.H. Ed.), CRC Press, Boca Raton, 1993, 535–562.

  • [109] Filadelfi, A.M and Castrucci, A.M. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates. J. Pineal Res. 20 (1996) 175–186. [CrossRef]

  • [110] Mira, E. Prime osservazioni sull’ attivata della melatonina sui cromatofori di Scardinus erythrophtalmus L. — Arch. Int Pharmacodyn. Ther. 138 (1962) 41–50.

  • [111] Hu, F. Hormonal influence on goldfish pigment cells in vitro, In: Cinemicrography in cell biology, (Rose, G.G. Ed.), Academic Press, New York, 1963, 339–356.

  • [112] Hafeez, M.A. Effects of melatonin on the body coloration and spontaneous swimming activity in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 36 (1970) 639–656. [CrossRef]

  • [113] Owens, D.W., Gem, W.A., Ralph, C.L. and Boardman, T.J. Nonrelationship between plasma melatonin and background adaption in the rainbow trout (Salmo gairdneri) Gen. Comp. Endocrinol. 34 (1978) 459–467. [CrossRef]

  • [114] Visconti, M.A. and Castrucci, A.M. Melanotropin receptors in the cartilaginous fish, Potamotrygon reticulates and in lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 106 (1993) 523–528. [CrossRef]

  • [115] Teh, M.T. and Sudgen, D. An endogenous 5 HT receptor mediates pigment granule dispersion in Xenopus laevis melanophores. Br. J. Pharm. 132 (2001) 1799–1808. [CrossRef]

  • [116] David, S., Kathryn, D., Hough, K.A. and Teh, M.T. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 17 (2004) 454–460. [CrossRef]

  • [117] Slominski, A., Baker, J., Rosano, T.G., Guist, L.W., Ermak, G., Grande, M. and Gaudet, S.J. Metabolism of serotonin to N-acetylserotonin, melatonin and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 271 (1996) 12281–12286. [CrossRef]

  • [118] Slominski, A., Pisarchik, A., Semak, I., Seatman, T., Wortsman, J., Szczesniewski, A., Slugocki, G., McNulty, J., Kauser, S., Tobin, D.J, Jing, C. and Johansson, O. Serotonergic and melatonergic systems are fully expressed in human skin. FASEB J. 16 (2002) 896–898.

  • [119] Slominski, A., Semak, I., Pisarchik, A., Sweatman, T., Szczesniewski, A. and Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 511 (2002) 102–106. [CrossRef]

  • [120] Tobin, D.J., Zmijewski, M.A., Wortsman, J. and Paus, R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endol. Metab. 19 (2008) 17–24. [CrossRef]

  • [121] Slominski, A., Fischer, T.W., Zmijewski, A., Wortsman, J., Semak, I., Slominski, R.M. and Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrinology 27 (2005) 137–148.

  • [122] Cerletti. A. and Berde, B. Effect of d-lysergic acid diethylamide and 5-hydroxytryptamine on guppy Poecilia reticulatus chromatophores. Experientia 11 (1955) 312–313. [CrossRef]

  • [123] Ruffin, N.E., Reed, B.L. and Finnin B.C. The specificity of melatonin as a melanophore controlling factor in the pencil fish. Life Sci. 8Part II (1969) 1167–1174.

  • [124] Davey, K.G. Serotonin and change of color in frogs. Nature 183 (1959) 1271–1273. [CrossRef]

  • [125] Veerdonk, K. and Vande, V.C.G. Serotonin,a melanocyte stimulating component in the dorsal skin secretion of Xenopus laevis. Nature 187 (1960) 948. [CrossRef]

  • [126] Lerner, A.B. and Case, J.D. Melatonin. Fed. Proc. Am. Soc. Biol. 19 (1960) 590–592.

  • [127] Nakajima, T. Active peptides in amphibian skin. TIPS 2 (1981) 202–205.

  • [128] Yoshie, S., Toshihiko, I. and Fujita, T. Coexistence of bombesin and 5 hydroxytryptamine in the cutaneous gland of frog Bombina orientalis. Cell Tissue Res. 239 (1984) 25–29. [CrossRef]

  • [129] Miller, L.J. Serotoninergic activity stimulates melanin dispersion within dermal melanophores of newts. Life Sci. 44 (1989) 355–359. [CrossRef]

  • [130] Potenza, M.N. and Michael, R.L. Characterization of serotonin receptor endogenous to frog melanophores. Naunyn. Schm. Arch. Pharm. 349 (1994) 11–19.

  • [131] Olivereau, M. Serotonin and MSH secretion: Effect of parachlorpphenylalanine on the pituitary cytology of the eel. Cell Tissue Res. 19 (1978) 83–92.

  • [132] Olivereau, M., Olivereau, J-M., and Aimar, C. Responses of MSH and prolactin cells to 5-hydroxytryptophan (5-HTP) in amphibians and teleosts. Cell Tissue Res. 207 (1980) 377–385.

  • [133] Slominski, S.A., Wortsman, J. and Tobin, D.J. Serotonergic and melatonergic system: securing a place under the sun. FASEB J. 19 (2005) 176–194. [CrossRef]

  • [134] Lundeberg, L., El-Nour, H., Mohabbati, S., Morales, M., Azmitis, E. and Nordlind, K. Expression of serotonin receptors in allergic contact eczematous human skin. Arch. Dermatol. Res. 294 (2002) 393–398.

  • [135] Slominski, A., Pisarchik, A., Zbytek, B., Tobin, D.J., Kauser, S. and Wortsman, J. Functional activity of serotonergic and melatonergic systems expressed in the skin. J. Cell Physiol. 196 (2003) 144–153. [CrossRef]

  • [136] Slominski, A., Pisarchik, A., Semak, I., Sweatman, T., Szczesniewski, A. and Wortsman, J. Serotonergic system in hamster skin. J. Invest. Dermatol. 119 (2002) 934–942. [CrossRef]

  • [137] Slominski, A., Pisarchik, A., Semak, I., Seweatman, T. and Wortsman, J. Characterization of the serotonergic system in the C57BL/6 mouse skin. Eur. J. Biochem. 270 (2003) 3335–3344. [CrossRef]

  • [138] Slominski, A., Pisarchik, A., Johansson, O., Jing, C., Semak, I., Slugocki, G. and Wortsman, J. Tryptophan hydroxylase (TPH) expression in human skin cells. Biochim. Biophys. Acta 1639 (2003) 80–86.

  • [139] Iyengar, B. Indoleamines and the UV-light-sensitive photoperiodic responses of the melanocyte network: a biological calendar. Experientia 50 (1994) 733–736. [CrossRef]

  • [140] Séguéla, P., Watkins, K.C. and Descarries, L. Ultra structural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J. Comp. Neurol. 289 (1989) 129–142. [CrossRef]

  • [141] Göthert, M., Bühlen, M., Fink, K., and Molderings, G. Regulation of neurotransmitter release in the central and peripheral nervous system via pre-synaptic 5-HT receptors. In: Serotonin in the Central Nervous System and Periphery. (Takada, A., Curzon, G., Eds). Amsterdam: Elsevier, 1995, 23–30.

  • [142] Johansson, O., Liu, P.-Y., Bondesson, L., Norlind, K., Olsson, M.J., Lontz, W., Verhofstad, A., Liang, Y., and Gangi, S. A serotonin-like immunoreactivity is present in human cutaneus melanocytes. J. Invest. Dermatol. 111 (1998) 1010–1014. [CrossRef]

  • [143] Norlind, K., Azmiyia, E.C. and Slominski, A. The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp. Dermatol. 17 (2008) 301–311. [CrossRef]

  • [144] Iyengar, B. The UV-responsive melanocyte system: a peripheral network for photoperiod time measurement, a function of indoleamine expression. Acta Anat. (Basel) 163 (1998) 173–178. [CrossRef]

  • [145] Bos, J.D. Skin immune system (SIS). CRC Press, Boca Raton, 1997, Florida.

  • [146] Fitzpatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M. and Austen, K.F. Dermatology in General Medicine. Mc Graw-Hill New York, 1997.

  • [147] Weisshaar, E., Ziethen, B. and Gollnick, H. Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm. Res. 46 (1997) 412–416. [CrossRef]

  • [148] Balaskas, E.V., Bamihas, G.I., Karamouzis, M., Voyiatzis, G. and Tourkantonis, A. Histamine and serotonin in uremic pruritis: effect of ondansetron in CAPD-pruritic patient. Nephron 78 (1998) 395–402. [CrossRef]

  • [149] Hagermark, O. Periperal and central mediators of itch. Skin Pharmacol. 5 (1992) 1–8. [CrossRef]

  • [150] Kam, P.C. and Tan, K.H., Pruritis-itching for a cause and relief? Anaesthesia 51 (1996) 1133–1138. [CrossRef]

  • [151] Marieb, E. Human anatomy and physiology. San Francisco: Benjamin Cummings. 2001, 414.

  • [152] Hill, S.J., Ganellin, C.R., Timmerman, H., Schwartz, J.C., Shankley, N.P., Young, J.M., Schunack, W., Levi, R. and Haas, H.L.. International Union of Pharmacology XIII. Classification of histamine receptors. Pharmacol. Rev. 49 (1997) 253–278.

  • [153] Kendall, A.I. and Schmidt, F.O. Physiological action of certain cultures of the gas bacillus. Studies in bacterial metabolism. LXXXI. J. Infect. Diseases 39 (1926) 250–259. [CrossRef]

  • [154] Acharya, L.S.K. and Ovais, M. Effect of histaminergic drugs on melanophores of fish scales an in vitro study. J. Cell Tissue Res. 5 (2005) 425–478.

  • [155] Bhattacharya, S.K., Sanyal, A.K., Lal, R. and Ghosal, S. Histamine releasing activity of some indole-3-alkylamines: Aspects of allergy and applied immunol. IV, 1973, (Sanyal,R.K. Ed.), Delhi.

  • [156] Fernando, M.M. and Grove, D.J. Melanophore aggregation in the plaice (Pleuronectes platessa L.) I. Changes in in vivo sensitivity to sympathomimetic amines. Comp. Biochem. Physiol. 48 A (1974 a) 711–721. [CrossRef]

  • [157] Ali, S.A, Ali, A.S. and Ovais, M. Effect of histaminergic drugs on tail melanophores of tadpole, Bufo melanostictus. Indian J. Exp. Biol. 31 (1993) 440–442.

  • [158] Ovais, M. and Chimania, S.R. Mechanism of histamine induced dispersal response in the isolated web melanophores of a frog, Rana tigerina (Daud.). Indian J. Exp. Biol. 33 (1995) 348–352.

  • [159] Ali, S.A., Peter, J. and Ali A.S. Histamine receptors in the skin melanophores of Indian Bull frog Rana tigerina. Comp. Biochem Physiol. A. 121 (1998) 229–334. [CrossRef]

  • [160] Peter, J., Ali, S.A. and Ali, S.A. Effect of histaminergic drugs on integumental melanophores of Bufo melanostictus. Indian J. Exp. Biol. 34 (1996) 427–430.

  • [161] Tomita, Y., Maeda, K. and Tagami, H. Stimulatory effect of histamine on normal human melanocytes in vitro. Tohoku J. Exp. Med. 155 (1988) 209–210. [CrossRef]

  • [162] Niekerk, C.H.V. and Prinsloo, A.E.M. Effect of skin pigmentation on the response to intra-dermal histamine. Int. Arch. Allergy Immunol. 76 (1985) 73–75. [CrossRef]

  • [163] Yoshida, M., Takahashi, Y. and Inoue, S. Histamine induces melanogenesis and morphologic changes by protein kinase a activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114 (2000) 334–342. [CrossRef]

  • [164] Lassalle, M.W., Igarashi, S., Sasaki, M., Wakamatsu, K., Ito, S. and Horikoshi, T. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res. 16 (2003) 81–84. [CrossRef]

  • [165] Gilchrest, B.A., Soter, N.A., Stoff, J.S. and Mihm, M.C. Jr. The human sunburn reaction: histological and biochemical studies. J. Am. Acad. Dermatol. 5 (1981) 411–422. [CrossRef]

  • [166] Tomita, Y., Maeda, K. and Tagami, H. Mechanisms for hyper-pigmentation in postinflammatory pigmentation, urticaria pigmentosa and sunburn. Dermatologica 179 (1989) 149–153. [CrossRef]

  • [167] Chou, V.H., Lee-Wong, M., Wong, R. and Cohen, H.W. The variances in histamine control skin-testing response between Asian/Pacific islanders and other racial groups. J. Allergy Clin. Immunol. 113 (2004) S181. [CrossRef]

  • [168] Metz, J.R, Peter, J.J. and Flik, G. Molecular biology and physiology of the melanocortin system in fish: a review. Gen. Comp. Endocrinol. 48 (2006) 150–162. [CrossRef]

  • [169] Selz, Y., Braasch, I., Hoffmann, C., Schmidt, C., Schulthesis, C., Schartl, M. and Volff, J.N. Evolution of melanocortin receptors in teleost fish: the melanocortin type 1 receptor. Gene 40 (2007) 114–122. [CrossRef]

  • [170] Richardson, J., Lundegaard, P.R., Reynolds, N.L., Dorin, J.R., Porteous, D.J., Jackson, I.J. and Patton, E.E. mc1-r pathway regulation of zebrafish melanosome dispersion. Zebrafish 5 (2008) 289–295. [CrossRef]

  • [171] Haitina, T., Klovins, J., Takahashi, A., Lowgren, M., Ringholm, A., Enberg, J., Kawauchi, H., Larson, E., Fredriksson, R. and Schioth, H. Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes. BMC Evol. Biol. 7 (2007) 101.

  • [172] Cerdá-Reverter, J.M., Ling, M.K., Schiöth, H.B. and Peter, R.E. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J. Neurochem. 87 (2003) 1354–1367. [CrossRef]

  • [173] Abdel-Malek, Z., Swope, V.B., Suzuki, I., Akcali, C., Harriger, M.D., Boyce, S.T., Urabe, K. and Hearing, V.J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 92 (1995) 1789–1793. [CrossRef]

  • [174] Thody, A.J, Ridley, K., Penny, R.J., Chalmers, R., Fisher, C. and Shuster, S. MSH peptides are present in mammalian skin. Peptides 4 (1983) 813–816. [CrossRef]

  • [175] Tsatmali, M., Yukitake, J. and Thody, A.J. ACTH1-17 is a more potent agonist at the human MC1 receptor than alpha-MSH. Cell. Mol. Biol. 45 (1999) 1029–1034.

  • [176] Tsatmali, M., Ancans, J., Yukitake, J. and Thody, A.J. Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res. 13Suppl 8 (2000) 125–129.

  • [177] Tsatmali, M., Ancan, J. and Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50 (2002) 125–134. [CrossRef]

  • [178] Kauser, S., Schallreuter, K.U., Thody, A.J., Gummer, C. and Tobin, D.J. Regulation of human epidermal melanocyte biology by beta-endorphin. J. Invest. Dermat. 120 (2003) 1073–1080. [CrossRef]

  • [179] Kauser, S., Thody, A.J., Schallreuter, K.U., Gummer, C.L. and Tobin, D.J. A fully functional proopiomelanocortin/melanocortin-1 receptor system regulates the differentiation of human scalp hair follicle melanocytes. Endocrinology 146 (2005) 532–543.

  • [180] Rousseau, K., Kauser, S., Pritchard, L., Warhurst, A., Oliver, R.L., Slominski, A., Wei, E.T., Thody, A.J, Tobin, D.J and White, A. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 21 (2007) 1844–1856. [CrossRef]

  • [181] Eys, G J.J.M. van and Peters, P.T. W. Evidence for a direct role of alpha-MSH in morphological background adaptation of the skin in Sarotheradon mossambicus. Cell Tissue Res. 217 (1981) 361–372. [CrossRef]

  • [182] Halaban, R. The regulation of normal melanocyte proliferation. Pigment Cell. Res. 13 (2000) 4–14. [CrossRef]

  • [183] Cerda-Reverter, J.M., Ringholm, A., Schioth, H.B. and Peter, R.E. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: Involvement in the control of food intake. Endocrinology 144 (2003) 2336–2349. [CrossRef]

  • [184] Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 77 (1997) 591–625.

  • [185] Sumpter, J.P., Pickering, A.D. and Pottinger, T.G. Stress-induced elevation of plasma alpha-MSH and endorphin in brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 59 (1985) 257–265. [CrossRef]

  • [186] Van der Salm, A.L., Metz, J.R., Wendelaar Bonga, S.E. and Flik, G. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149.

  • [187] Lamers, A.E., Balm, P.H.M., Haenen, H.E.M.G., Jenks, B.G. and Wendelaar Bonga, S.E. Regulation of differential release of alphamelanocyte stimulating hormone forms from the pituitary of a teleost fish, Oreochromis mossambicus. J. Endocrinol. 129 (1991) 179–187. [CrossRef]

  • [188] Novales, R.R. Recent studies on the melanin dispersing effect of MSH on melanophores. Gen. Comp. Endocrinol. Suppl. 3 (1972) 125–135. [CrossRef]

  • [189] Baker, B.I., Wilson, J.F. and Bowley, T.J. Changes in pituitary and plasma levels of MSH in teleosts during physiological colour change. Gen. Comp. Endocrinol. 55 (1984) 142–149. [CrossRef]

  • [190] Iga, T. and Takabatake, I. Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki. Comp. Biochem. Physiol. 73 (1982) 51–55.

  • [191] Abbott, F.S. The response of melanophores in isolated scales of Fundulus heteroclitus to melanophore-stimulating hormone (MSH). Can. J. Zool. 48 (1970) 581–584. [CrossRef]

  • [192] Arends, R.J., Rotllant, J., Metz, J.R., Mancera, J.M., Wendelaar-Bonga, S.E. and Flik, G. alpha-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure. J. Endocrinol. 166 (2000) 427–435. [CrossRef]

  • [193] Höglund, E., Balm, P.H.M. and Winberg, S. Behavioural and neuroendocrine effects of environmental background colour and social interaction in Arctic charr (Salvenlinus alpinus). J. Exp. Biol. 205 (2002) 2535–2543.

  • [194] Salm, A.L. van der, Martínez, M., Flik, G. and Wendelaar Bonga, S.E. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture 241 (2004) 371–386. [CrossRef]

  • [195] Van der Salm, A.L. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149. [CrossRef]

  • [196] Lerner, A.B. and McGuire, J.S. Effect of alpha- and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189 (1961) 176–179. [CrossRef]

  • [197] Lerner, A.B. and McGuire, J.S. Melanocyte-stimulating hormone and adrenocorticotrophic hormone. Their relation to pigmentation. N. Engl. J. Med. 270 (1964) 539–546. [CrossRef]

  • [198] Geschwind, II, Huseby, R.A. and Nishioka, R. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog. Horm. Res. 28 (1972) 91–130.

  • [199] Spencer, J.D., Chavan, B., Marles, L.K., Kauser, S., Rokos, H. and Schallreuter, K.U. A novel mechanism in control of human pigmentation by beta-melanocyte-stimulating hormone and 7-tetrahydrobiopterin. J. Endocrinol. 187 (2005) 293–302. [CrossRef]

  • [200] Nordlund, J.J., Biossy, R.E., Hearing, V.J., King, R.A. and Ortonne, J.P. The pigmentary system. Physiology and pathophysiology. New York and Oxford: Oxford University Press.

  • [201] Krude, H., Beibermann, H., Luck, W., Horn, R., Brabant, G. and Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19 (1998) 155–157. [CrossRef]

  • [202] Valverde, P., Healy, H., Jackson, I., Rees, J.L. and Thody, A.J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11 (1995) 328–330. [CrossRef]

  • [203] Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Roselli-Rehfuss L., Baack, E., Mountjoy, K.G. and Cone, C.D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72 (1993) 827–834. [CrossRef]

  • [204] Slominski, A., Plonka, P.M., Pisarchik, A., Smart, J.L., Tolle, V., Wortsman, J. and Low, M.J. Preservation of eumelanin hair pigmentation in proopiomelanocortin — deficient mice on a non-agouti (a/a) genetic background. Endocrinology 146 (2005) 1245–1253. [CrossRef]

  • [205] Baker, B. I. and Rance, T.A. Further observations on the distribution and properties of teleost melanin concentrating hormone. Gen. Comp. Endocrinol. 50 (1983) 423–431. [CrossRef]

  • [206] Naito, N., Nakai, Y., Kawauchi, H. and Hayashi, Y. Immunocytochemical identification melanin-concentrating hormone in the brain and pituitary gland of the teleost fishes Oncorhynchus keta and Salmo gairdneri. Cell. Tissue Res. 242 (1985) 41–48. [CrossRef]

  • [207] Kawauchi, H., Kawazoe, I., Tsubokawa, M., Kishida, M. and Baker, B.I. Characterization of melanin concentrating hormone in chum pituitaries. Nature 305 (1983) 321–323. [CrossRef]

  • [208] Wilkes, B.C., Hruby, V.J, Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E. Synthesis of a cyclic melanotropic peptide exhibiting both melanin-concentrating and dispersing activities. Science 224 (1984) 1111–1113. [CrossRef]

  • [209] Saito, Y., Nothacker, H.P. and Cavelli, O. G. Protein coupled receptor SLC-1. Biochem. Biophys. Res. Commun. 289 (2000) 44–50. [CrossRef]

  • [210] Saito, Y. and Nagasaki, H. The melanin-concentrating hormone system and its physiological functions. Res. Probl. Cell Differ. 46 (2008) 159–179. [CrossRef]

  • [211] Nagai, M., Oshima, N. and Fujji, R. Comparative study of melanin concentrating hormone (MCH) action on teleost melanophores. Biol. Bull. 171 (1986) 360–370. [CrossRef]

  • [212] Takahashi, A., Kosugi, T., Kobayashi, Y., Yamanome, T., Schioth, H.B. and Kawauchi, H. The melanin concentrating hormone receptor (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder. Gen. Comp. Endocrinol. 151 (2007) 210–219. [CrossRef]

  • [213] Oshima, N., Kasukawa, H., Fujii, R., Wilkes, C., Hruby, N.J., Castrucci, M. de.L. and Hadley, M.E. Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores. J. Exp. Zoolog. 234 (1985) 175–180. [CrossRef]

  • [214] Castrucci, A.M.L., Lebl, M., Hruby, V.J., Matsunaga, T.O. and Hadley, M.E. Melanin concentrating hormone (MCH): The message sequence. Life Sci. 45 (1989) 1141–1148. [CrossRef]

  • [215] Svensson, S.P.S., Norberg, T., Andersson, R.G.G., Grundström, N. and Karlsson, J.O.G. MCH-induced pigment aggregation in teleost melanophores is associated with a c-AMP reduction. Life Sci. 48 (1991) 2043–2046. [CrossRef]

  • [216] Kemp, E.H., Waterman, E.A., Hawes, B.E., O’Neill, K., Gottumukkala, R.V., Gawkrodger, D.J, Weetman, A.P. and Watson, P.F. The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in Vitiligo. J. Clin. Invest. 109 (2002) 923–930. [CrossRef]

  • [217] Kemp, E.H. and Weetman, A.P. Melanin-concentrating hormone and melanin-concentrating hormone receptors in mammalian skin physiopathology. Peptides 30 (2009) 2071–2075. [CrossRef]

  • [218] Karne, S., Jayawickreme, C.K. and Lerner, M.R. Cloning and characterization of an endothelin-3 receptor (ET c receptor) from Xenopus laevis dermal melanophores. J. Biol. Chem. 268 (1993) 19126–19133.

  • [219] Fujii, R., Tanaka, Y. and Hayashi, H. Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zoolog. Sci. 10 (1993) 763–772.

  • [220] Fujita, T. and Fujii, R. Endothelins disperse light scattering organelles in leucophores of the medaka, Oryzias latipes. Zoolog. Sci. 14 (1997) 559–569. [CrossRef]

  • [221] Murata, N. and Fujii, R. Pigment-aggregating action of endothelins on medaka xanthophores. Zoolog. Sci. 17 (2000) 853–862. [CrossRef]

  • [222] Scarparo, A.C., Isoldi, M.C., de Lima, L.H., Visconti, M.A. and Castrucci, A.M. Expression of endothelin receptors in frog, chicken, mouse and human pigment cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147 (2007) 640–646. [CrossRef]

  • [223] Demunter, A., De Wolf-Peeters, C., Degreef, H., Stas, M., van den and Oord, J.J. Expression of the endothelin B receptor in the pigment cell lesion of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 438 (2001) 485–491. [CrossRef]

  • [224] Civelli, J.O., Bunzow, R. and Grandy, D.K. Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32 (1998) 281–307.

  • [225] Kemenade, B.M, Tonon, M.C., Jenks, B.C. and Vaudry, H. Characteristics of receptors for dopamine in pars intermedia of the amphibian Xenopus laevis. Neuroendorinology 44 (1986) 446–456. [CrossRef]

  • [226] Ovais, M. and Chimania, S.R. Evidence of presence of GABA-ergic receptor mediated dispersion in isolated scale melanophores of a carp, Cirrhinus mrigala Ham. Indian J. Exp. Biol. 40 (2002) 78–82.

  • [227] Marotti, L.A. Jr., Jayawickreme, C.K. and Lerner, M.R. Functional characterization of receptor for vasoactive-intestinal peptide in cultured melanophores from Xenopus laevis. Pigment Cell Res. 12 (1999) 89–97. [CrossRef]

  • [228] McClintock, T.S., Rising, J.P. and Lerner, M.R. Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C. J. Cell Physiol. 167 (1996) 1–7<1::AID-JCP1>3.0.CO;2-T [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jorge Galindo-Villegas, Erick Garcia-Garcia, and Victoriano Mulero
Developmental & Comparative Immunology, 2016
Sharique A. Ali and Ishrat Naaz
Journal of Microscopy and Ultrastructure, 2014, Volume 2, Number 4, Page 230
Maria Nathália de Carvalho Magalhães Moraes, Maristela de Oliveira Poletini, Bruno Cesar Ribeiro Ramos, Leonardo Henrique Ribeiro Graciani de Lima, and Ana Maria de Lauro Castrucci
Photochemistry and Photobiology, 2014, Volume 90, Number 3, Page 696
Iain S. Haslam, Eric W. Roubos, Maria Luisa Mangoni, Katsutoshi Yoshizato, Hubert Vaudry, Jennifer E. Kloepper, David M. Pattwell, Paul F. A. Maderson, and Ralf Paus
Biological Reviews, 2014, Volume 89, Number 3, Page 618
Michael Nguyen, Manoj K. Poudel, Adam Michael Stewart, and Allan V. Kalueff
Brain Research Bulletin, 2013, Volume 98, Page 145
Allan V. Kalueff, Michael Gebhardt, Adam Michael Stewart, Jonathan M. Cachat, Mallorie Brimmer, Jonathan S. Chawla, Cassandra Craddock, Evan J. Kyzar, Andrew Roth, Samuel Landsman, Siddharth Gaikwad, Kyle Robinson, Erik Baatrup, Keith Tierney, Angela Shamchuk, William Norton, Noam Miller, Teresa Nicolson, Oliver Braubach, Charles P. Gilman, Julian Pittman, Denis B. Rosemberg, Robert Gerlai, David Echevarria, Elisabeth Lamb, Stephan C.F. Neuhauss, Wei Weng, Laure Bally-Cuif, and Henning Schneider, and the Zebrafish Neuros
Zebrafish, 2013, Volume 10, Number 1, Page 70
Christina Kindermann, Edward J. Narayan, Francis Wild, Clyde H. Wild, and Jean-Marc Hero
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, Volume 165, Number 2, Page 223
Saima Salim, Ayesha S. Ali, and Sharique A. Ali
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2013, Volume 164, Number 2, Page 117
Helen Nilsson Sköld, Sara Aspengren, and Margareta Wallin
Pigment Cell & Melanoma Research, 2013, Volume 26, Number 1, Page 29
Jonathan Cachat, Evan J. Kyzar, Christopher Collins, Siddharth Gaikwad, Jeremy Green, Andrew Roth, Mohamed El-Ounsi, Ari Davis, Mimi Pham, Samuel Landsman, Adam Michael Stewart, and Allan V. Kalueff
Behavioural Brain Research, 2013, Volume 236, Page 258
Susan R. Meier-Davis, Kevin Dines, Fatima M. Arjmand, Richard Hamlin, Betsy Huang, Jainye Wen, Chad Christianson, Jutaro Shudo, and Tetsuto Nagata
Cutaneous and Ocular Toxicology, 2012, Volume 31, Number 4, Page 312
Dong-Chan Kim, Seong-Hwan Rho, Jae-Choen Shin, Hyun Ho Park, and Dongjin Kim
Biochemical and Biophysical Research Communications, 2011, Volume 411, Number 1, Page 121

Comments (0)

Please log in or register to comment.