Jump to ContentJump to Main Navigation

Cellular and Molecular Biology Letters

Editor-in-Chief: /

4 Issues per year


Impact Factor 2013: 1.782

SCImago Journal Rank (SJR): 0.673
Source Normalized Impact per Paper (SNIP): 0.530

VolumeIssuePage

Stem cells from adipose tissue

1Medical University of Warsaw

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 16, Issue 2, Pages 236–257, ISSN (Online) 1689-1392, DOI: 10.2478/s11658-011-0005-0, March 2011

Publication History

Published Online:
2011-03-26

Abstract

This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.

Keywords: Adult stem cells; Adipose-derived stem cells/stromal cells; Adipose tissue; Regenerative medicine

  • [1] Zuk, P.A. The adipose-derived stem cell: Looking back and looking ahead. Mol. Biol. Cell 21 (2010) 1783–1787. [CrossRef]

  • [2] Dazzi, F., Ramasamy, R., Glennie, S., Jones, S.P. and Roberts, I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 20 (2006) 161–171. [CrossRef]

  • [3] Clarke, D.L., Johansson, C.B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., Lendahl, U. and Frisen, J. Generalized potential of adult neural stem cells. Science 288 (2000) 1660–1663. [CrossRef]

  • [4] Ng, A.M., Saim, A.B., Tan, K.K., Tan, G.H., Mokhtar, S.A., Rose, I.M., Othman, F. and Idrus, R.B. Comparison of bioengineered human bone construct from four sources of osteogenic cells. J. Orthop. Sci. 10 (2005) 192–199. [CrossRef]

  • [5] Crisan, M., Yap, S., Casteilla, L., Chen, C., Corselli, M., Park, T.S. and Peault, B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3 (2008) 301–313. [CrossRef]

  • [6] Huang, G.T., Gronthos, S. and Shi, S. Mesenchymal stem cells derived from dental tissues vs. Those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 88 (2009) 792–806. [CrossRef]

  • [7] Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228. [PubMed] [CrossRef]

  • [8] Gesta, S., Tseng, Y.H. and Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 131 (2007) 242–256. [CrossRef]

  • [9] Kershaw, E.E. and Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89 (2004) 2548–2556. [CrossRef]

  • [10] Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X. and Cui, Z. Adipose-derived stem cell: A better stem cell than bmsc. Cell Biochem. Funct. 26 (2008) 664–675. [CrossRef]

  • [11] Katz, A.J., Llull, R., Hedrick, M.H. and Futrell, J.W. Emerging approaches to the tissue engineering of fat. Clin. Plast Surg. 26 (1999) 587–603.

  • [12] Schaffler, A. and Buchler, C. Concise review: Adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25 (2007) 818–827. [CrossRef]

  • [13] Williams, S.K., McKenney, S. and Jarrell, B.E. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant. 4 (1995) 281–289. [CrossRef]

  • [14] Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T. and Kaneda, Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13 (2006) 77–81. [CrossRef]

  • [15] Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8 (2006) 315–317. [CrossRef]

  • [16] Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W. and Gimble, J.M. Surface protein characterization of human adipose tissuederived stromal cells. J. Cell Physiol. 189 (2001) 54–63. [CrossRef]

  • [17] Dawn, B. and Bolli, R. Adult bone marrow-derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Res. Cardiol. 100 (2005) 494–503. [CrossRef]

  • [18] De Ugarte, D.A., Alfonso, Z., Zuk, P.A., Elbarbary, A., Zhu, M., Ashjian, P., Benhaim, P., Hedrick, M.H. and Fraser, J.K. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89 (2003) 267–270. [CrossRef]

  • [19] Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W. and Ho, A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33 (2005) 1402–1416. [CrossRef]

  • [20] Kern, S., Eichler, H., Stoeve, J., Kluter, H. and Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24 (2006) 1294–1301. [CrossRef]

  • [21] Romanov, Y.A., Darevskaya, A.N., Merzlikina, N.V. and Buravkova, L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med. 140 (2005) 138–143. [CrossRef]

  • [22] Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbal, M., Laharrague, P., Penicaud, L., Casteilla, L. and Blancher, A. Immunomodulatory effect of human adipose tissuederived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129 (2005) 118–129. [CrossRef]

  • [23] Peroni, D., Scambi, I., Pasini, A., Lisi, V., Bifari, F., Krampera, M., Rigotti, G., Sbarbati, A. and Galie, M. Stem molecular signature of adipose-derived stromal cells. Exp. Cell Res. 314 (2008) 603–615. [CrossRef]

  • [24] Egusa, H., Iida, K., Kobayashi, M., Lin, T.Y., Zhu, M., Zuk, P.A., Wang, C.J., Thakor, D.K., Hedrick, M.H. and Nishimura, I. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 13 (2007) 2589–2600. [CrossRef]

  • [25] Stolzing, A., Jones, E., McGonagle, D. and Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 129 (2008) 163–173. [CrossRef]

  • [26] Taha, M.F. and Hedayati, V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42 (2010) 211–216. [CrossRef]

  • [27] Froehlich, H., Gulati, R., Boilson, B., Witt, T., Harbuzariu, A., Kleppe, L., Dietz, A.B., Lerman, A. and Simari, R.D. Carotid repair using autologous adipose-derived endothelial cells. Stroke 40 (2009) 1886–1891. [CrossRef]

  • [28] Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H. and Robson, P. Transcriptional regulation of nanog by oct4 and sox2. J. Biol. Chem. 280 (2005) 24731–24737.

  • [29] Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P. and Kogler, G. Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1 (2007) 364–366. [CrossRef]

  • [30] Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L. and Casteilla, L. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp. Cell Res. 312 (2006) 727–736.

  • [31] Avram, A.S., Avram, M.M. and James, W.D. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J. Am. Acad. Dermatol. 53 (2005) 671–683. [CrossRef]

  • [32] Fraser, J.K., Wulur, I., Alfonso, Z., Zhu, M. and Wheeler, E.S. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9 (2007) 459–467. [CrossRef]

  • [33] Festy, F., Hoareau, L., Bes-Houtmann, S., Pequin, A.M., Gonthier, M.P., Munstun, A., Hoarau, J.J., Cesari, M. and Roche, R. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem. Cell Biol. 124 (2005) 113–121. [CrossRef]

  • [34] Kang, Y., Park, C., Kim, D., Seong, C.M., Kwon, K. and Choi, C. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc. Res. 80 (2010) 310–316. [CrossRef]

  • [35] Kajiyama, H., Hamazaki, T.S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulinproducing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54 (2010) 699–705.

  • [36] Levi, B., James, A.W., Nelson, E.R., Vistnes, D., Wu, B., Lee, M., Gupta, A. and Longaker, M.T. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One 5 (2010) e11177.

  • [37] Kilroy, G.E., Foster, S.J., Wu, X., Ruiz, J., Sherwood, S., Heifetz, A., Ludlow, J.W. and Gimble, J.M. Cytokine profile of human Adipose-derived Stem Cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. Cell. Physiol. 212 (2007) 702–709. [CrossRef]

  • [38] Witkowska-Zimny, M., Wróbel, E. and Przybylski, J. The most importat trascriptional factors of osteoblastogeesis. Adv. Cell Biol. 2 (2010) 17–28.

  • [39] Mauney, J.R., Nguyen, T., Gillen, K., Kirker-Head, C., Gimble, J.M. and Kaplan, D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3d scaffolds. Biomaterials 28 (2007) 5280–5290. [CrossRef]

  • [40] Zhao, Y., Lin, H., Zhang, J., Chen, B., Sun, W., Wang, X., Zhao, W., Xiao, Z. and Dai, J. Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng. Part A 15 (2009) 13–21. [CrossRef]

  • [41] Hong, L., Colpan, A., Peptan, I.A., Daw, J., George, A. and Evans, C.A. 17-beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng. 13 (2007) 1197–1203.

  • [42] Brayfield, C., Marra, K. and Rubin, J.P. Adipose stem cells for soft tissue regeneration. Handchir. Mikrochir. Plast. Chir. 42 (2010) 124–128. [PubMed] [CrossRef]

  • [43] Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13 (2002) 4279–4295. [CrossRef]

  • [44] Lee, J.H., Rhie, J.W., Oh, D.Y. and Ahn, S.T. Osteogenic differentiation of human adipose tissue-derived stromal cells (hascs) in a porous threedimensional scaffold. Biochem. Biophys. Res. Commun. 370 (2008) 456–460.

  • [45] Lee, S.J., Kang, S.W., Do, H.J., Han, I., Shin, D.A., Kim, J.H. and Lee, S.H. Enhancement of bone regeneration by gene delivery of bmp2/runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31 (2010) 5652–5659. [CrossRef]

  • [46] Jeon, O., Rhie, J.W., Kwon, I.K., Kim, J.H., Kim, B.S. and Lee, S.H. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng. Part A 14 (2008) 1285–1294. [CrossRef]

  • [47] Lin, Y., Wang, T., Wu, L., Jing, W., Chen, X., Li, Z., Liu, L., Tang, W., Zheng, X. and Tian, W. Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J. Biomed. Mater Res. A 81 (2007) 900–910. [CrossRef]

  • [48] Li, X., Yao, J., Wu, L., Jing, W., Tang, W., Lin, Y., Tian, W. and Liu, L. Osteogenic induction of adipose-derived stromal cells: Not a requirement for bone formation in vivo. Artif. Organs 34 (2009) 46–54.

  • [49] Gastaldi, G., Asti, A., Scaffino, M.F., Visai, L., Saino, E., Cometa, A.M. and Benazzo, F. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J. Biomed. Mater Res. 94A (2010) 790–799.

  • [50] Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B. and Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22 (2004) 560–567. [CrossRef]

  • [51] Shen, F.H., Zeng, Q., Lv, Q., Choi, L., Balian, G., Li, X. and Laurencin, C.T. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Spine J. 6 (2006) 615–623. [CrossRef]

  • [52] Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F. and Richter, W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and bmp profile and is overcome by bmp-6. J. Cell Physiol. 211 (2007) 682–691.

  • [53] Kim, H.J. and Im, G.I. Chondrogenic differentiation of adipose tissuederived mesenchymal stem cells: Greater doses of growth factor are necessary. J. Orthop. Res. 27 (2009) 612–619. [CrossRef]

  • [54] Kim, B.S., Kang, K.S. and Kang, S.K. Soluble factors from ascs effectively direct control of chondrogenic fate. Cell Prolif. 43 (2010) 249–261. [CrossRef]

  • [55] Awad, H.A., Halvorsen, Y.D., Gimble, J.M. and Guilak, F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9 (2003) 1301–1312.

  • [56] Mahmoudifar, N. and Doran, P.M. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31 (2010) 3858–3867. [CrossRef]

  • [57] Betre, H., Ong, S.R., Guilak, F., Chilkoti, A., Fermor, B. and Setton, L.A. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27 (2006) 91–99. [CrossRef]

  • [58] Jin, X., Sun, Y., Zhang, K., Wang, J., Shi, T., Ju, X. and Lou, S. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28 (2007) 2994–3003. [CrossRef]

  • [59] Brzoska, M., Geiger, H., Gauer, S. and Baer, P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 330 (2005) 142–150.

  • [60] Rodriguez, L.V., Alfonso, Z., Zhang, R., Leung, J., Wu, B. and Ignarro, L.J. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc. Natl. Acad. Sci. USA 103 (2006) 12167–12172. [CrossRef]

  • [61] Rodriguez-Serrano, F., Alvarez, P., Caba, O., Picon, M., Marchal, J.A., Peran, M., Prados, J., Melguizo, C., Rama, A.R., Boulaiz, H. and Aranega, A. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides. Cell Biol. Int. 34 (2010) 917–924. [CrossRef]

  • [62] Madonna, R. and De Caterina, R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am. J. Physiol. Cell Physiol. 295 (2008) C1271–1280.

  • [63] Heydarkhan-Hagvall, S., Schenke-Layland, K., Yang, J.Q., Heydarkhan, S., Xu, Y., Zuk, P.A., MacLellan, W.R. and Beygui, R.E. Human adipose stem cells: A potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187 (2008) 263–274.

  • [64] Planat-Benard, V., Silvestre, J.S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L. and Casteilla, L. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109 (2004) 656–663. [CrossRef]

  • [65] Verseijden, F., Posthumus-van Sluijs, S.J., Pavljasevic, P., Hofer, S.O., van Osch, G.J. and Farrell, E. Adult human bone marrow- and adipose tissuederived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro. Tissue Eng. Part A 16 (2010) 101–114. [CrossRef]

  • [66] Scherberich, A., Galli, R., Jaquiery, C., Farhadi, J. and Martin, I. Threedimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25 (2007) 1823–1829. [CrossRef]

  • [67] Nakagami, H., Maeda, K., Morishita, R., Iguchi, S., Nishikawa, T., Takami, Y., Kikuchi, Y., Saito, Y., Tamai, K., Ogihara, T. and Kaneda, Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler. Thromb. Vasc. Biol. 25 (2005) 2542–2547. [CrossRef]

  • [68] Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V. and March, K.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109 (2004) 1292–1298. [CrossRef]

  • [69] Muller, A.M., Mehrkens, A., Schafer, D.J., Jaquiery, C., Guven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., Scherberich, A. and Martin, I. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur. Cell Mater. 19 (2010) 127–135.

  • [70] Nakada, A., Fukuda, S., Ichihara, S., Sato, T., Itoi, S., Inada, Y., Endo, K. and Nakamura, T. Regeneration of central nervous tissue using a collagen scaffold and adipose-derived stromal cells. Cells Tissues Organs 190 (2009) 326–335. [CrossRef]

  • [71] Erba, P., Terenghi, G. and Kingham, P.J. Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Curr. Stem Cell Res. Ther. 5 (2009) 153–160.

  • [72] Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y. and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs 12 (2009) 123–130. [CrossRef]

  • [73] Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B. and Zulewski, H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341 (2006) 1135–1140.

  • [74] Long, J.L., Zuk, P., Berke, G.S. and Chhetri, D.K. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope 120 (2010) 125–131.

  • [75] Jeong, J.H., Lee, J.H., Jin, E.S., Min, J.K., Jeon, S.R. and Choi, K.H. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. (Wien) 152 (2010) 1771–1777.

  • [76] Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228. [CrossRef]

  • [77] Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E. and Christ, B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58 (2009) 570–581. [CrossRef]

  • [78] Hong, S.J., Traktuev, D.O. and March, K.L. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr. Opin. Organ Transplant. 15 (2010) 86–91. [CrossRef]

  • [79] Goudenege, S., Pisani, D.F., Wdziekonski, B., Di Santo, J.P., Bagnis, C., Dani, C. and Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of myod. Mol. Ther. 17 (2009) 1064–1072. [CrossRef]

  • [80] Kang, S.K., Putnam, L.A., Ylostalo, J., Popescu, I.R., Dufour, J., Belousov, A. and Bunnell, B.A. Neurogenesis of rhesus adipose stromal cells. J. Cell Sci. 117 (2004) 4289–4299. [CrossRef]

  • [81] Kingham, P.J., Kalbermatten, D.F., Mahay, D., Armstrong, S.J., Wiberg, M. and Terenghi, G. Adipose-derived stem cells differentiate into a schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 207 (2007) 267–274.

  • [82] Safford, K.M., Safford, S.D., Gimble, J.M., Shetty, A.K. and Rice, H.E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 187 (2004) 319–328.

  • [83] Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W. and Daley, G.Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451 (2008) 141–146.

  • [84] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861–872. [CrossRef]

  • [85] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920. [CrossRef]

  • [86] Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T. and Wu, J.C. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA 106 (2009) 15720–15725. [CrossRef]

  • [87] Grisendi, G., Bussolari, R., Cafarelli, L., Petak, I., Rasini, V., Veronesi, E., De Santis, G., Spano, C., Tagliazzucchi, M., Barti-Juhasz, H., Scarabelli, L., Bambi, F., Frassoldati, A., Rossi, G., Casali, C., Morandi, U., Horwitz, E.M., Paolucci, P., Conte, P. and Dominici, M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 70 (2010) 3718–3729. [CrossRef]

  • [88] Liu, H., Chu, Y. and Lou, G. Fiber-modified adenovirus can mediate human adipose tissue-derived mesenchymal stem cell-based anti-angiogenic gene therapy. Biotechnol. Lett. 32 (2010) 1181–1188. [CrossRef]

  • [89] Ghosh, S., Dean, A., Walter, M., Bao, Y., Hu, Y., Ruan, J. and Li, R. Cell density-dependent transcriptional activation of endocrine-related genes in human adipose tissue-derived stem cells. Exp. Cell Res. 316 (2010) 2087–2098.

  • [90] Walter, M., Liang, S., Ghosh, S., Hornsbz, P.J., and Li, R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28 (2009) 2745–2755.

  • [91] Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25 (2004) 3211–3222. [CrossRef]

  • [92] Cheng, N.C., Estes, B.T., Awad, H.A. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A 15 (2009) 231–241. [CrossRef]

  • [93] Haimi, S., Suuriniemi, N., Haaparanta, A.M., Ella, V., Lindroos, B., Huhtala, H., Raty, S., Kuokkanen, H., Sandor, G.K., Kellomaki, M., Miettinen, S. and Suuronen, R. Growth and osteogenic differentiation of adipose stem cells on pla/bioactive glass and pla/beta-tcp scaffolds. Tissue Eng. Part A 15 (2009) 1473–1480. [CrossRef]

  • [94] Marino, G., Rosso, F., Cafiero, G., Tortora, C., Moraci, M., Barbarisi, M. and Barbarisi, A. Beta-tricalcium phosphate 3d scaffold promote alone osteogenic differentiation of human adipose stem cells: In vitro study. J. Mater. Sci. Mater. Med. 21 353–363.

  • [95] McCullen, S.D., Zhu, Y., Bernacki, S.H., Narayan, R.J., Pourdeyhimi, B., Gorga, R.E. and Loboa, E.G. Electrospun composite poly(l-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed. Mater. 4 (2009) 035002. [CrossRef]

  • [96] Park, I.S., Han, M., Rhie, J.W., Kim, S.H., Jung, Y. and Kim, I.H. The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials 30 (2009) 6835–6843. [CrossRef]

  • [97] Muller, A.M., Davenport, M., Verrier, S., Droeser, R., Alini, M., Bocelli-Tyndall, C., Schaefer, D.J., Martin, I. and Scherberich, A. Platelet lysate as a serum substitute for 2d static and 3d perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue Eng. Part A 15 (2009) 869–875. [CrossRef]

  • [98] Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D., Hitt, D.C., Cooper, L.F. and Gimble, J.M. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10 (2004) 371–380. [CrossRef]

  • [99] Lee, J.H. and Kemp, D.M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem. Biophys. Res. Commun. 341 (2006) 882–888.

  • [100] Vieira, N.M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V.A., Strauss, B.E., Vainzof, M. and Zatz, M. Human multipotent adiposederived stem cells restore dystrophin expression of duchenne skeletalmuscle cells in vitro. Biol. Cell 100 (2008) 231–241. [CrossRef]

  • [101] Mizuno, H., Zuk, P.A., Zhu, M., Lorenz, H.P., Benhaim, P. and Hedrick, M.H. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 109 (2002) 199–209. [CrossRef]

  • [102] Rodriguez, A.M., Pisani, D., Dechesne, C.A., Turc-Carel, C., Kurzenne, J.Y., Wdziekonski, B., Villageois, A., Bagnis, C., Breittmayer, J.P., Groux, H., Ailhaud, G. and Dani, C. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. 201 (2005) 1397–1405.

  • [103] Lee, W.C., Sepulveda, J.L., Rubin, J.P. and Marra, K.G. Cardiomyogenic differentiation potential of human adipose precursor cells. Int. J. Cardiol. 133 (2009) 399–401.

  • [104] Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J.M., Penicaud, L. and Casteilla, L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94 (2004) 223–229. [CrossRef]

  • [105] Jumabay, M., Matsumoto, T., Yokoyama, S., Kano, K., Kusumi, Y., Masuko, T., Mitsumata, M., Saito, S., Hirayama, A., Mugishima, H. and Fukuda, N. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J. Mol. Cell. Cardiol. 47 (2009) 565–575. [CrossRef]

  • [106] Ashjian, P.H., Elbarbary, A.S., Edmonds, B., De Ugarte, D., Zhu, M., Zuk, P.A., Lorenz, H.P., Benhaim, P. and Hedrick, M.H, In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 111 (2003) 1922–1931. [CrossRef]

  • [107] Ryu, H.H., Lim, J.H., Byeon, Y.E., Park, J.R., Seo, M.S., Lee, Y.W., Kim, W.H., Kang, K.S. and Kweon, O.K. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 10 (2009) 273–284. [CrossRef]

  • [108] Li, K., Han, Q., Yan, X., Liao, L. and Zhao, R.C. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev. 19 (2010) 1267–1275. [CrossRef]

  • [109] Tobita, M., Uysal, A.C., Ogawa, R., Hyakusoku, H. and Mizuno, H. Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng. Part A 14 (2008) 945–953. [CrossRef]

Comments (0)

Please log in or register to comment.