## Abstract

We prove regularity for a class of boundary value problems for first order elliptic systems, with boundary conditions determined by spectral decompositions, under coefficient differentiability conditions weaker than previously known. We establish Fredholm properties for Dirac-type equations with these boundary conditions. Our results include sharp solvability criteria, over both compact and non-compact manifolds; weighted Poincaré and Schrödinger-Lichnerowicz inequalities provide asymptotic control in the noncompact case.

## Comments (0)