Jump to ContentJump to Main Navigation

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Cuntz, Joachim / Huybrechts, Daniel / Hwang, Jun-Muk

12 Issues per year

Increased IMPACT FACTOR 2013: 1.303
5-year IMPACT FACTOR: 1.427
Rank 21 out of 299 in category Mathematics in the 2013 Thomson Reuters Journal Citation Report/Science Edition
Mathematical Citation Quotient 2013: 1.32

VolumeIssuePage

Issues

Borel–Weil theory for groups over commutative Banach algebras

1Department of Mathematics, FAU Erlangen-Nürnberg, Bismarckstr. 1½, 91054 Erlangen, Germany

2Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany

Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal). Volume 2011, Issue 655, Pages 165–187, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: 10.1515/crelle.2011.040, March 2011

Publication History

Received:
2010-02-08
Revised:
2010-03-02
Published Online:
2011-03-01

Abstract

Let be a commutative unital Banach algebra, 𝔤 be a semisimple complex Lie algebra and be the 1-connected Banach–Lie group with Lie algebra . Then there is a natural concept of a parabolic subgroup of and we obtain generalizations of the generalized flag manifolds. In this note we provide an explicit description of all homogeneous holomorphic line bundles over with non-zero holomorphic sections. In particular, we show that all these line bundles are tensor products of pullbacks of line bundles over X(ℂ) by evaluation maps.

For the special case where is a C*-algebra, our results lead to a complete classification of all irreducible involutive holomorphic representations of on Hilbert spaces.

Comments (0)

Please log in or register to comment.
Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.