Ring completion of rig categories : Journal für die reine und angewandte Mathematik (Crelles Journal) Jump to ContentJump to Main Navigation
Show Summary Details

Journal für die reine und angewandte Mathematik

Managing Editor: Weissauer, Rainer

Ed. by Colding, Tobias / Cuntz, Joachim / Huybrechts, Daniel / Hwang, Jun-Muk


IMPACT FACTOR increased in 2015: 1.616
5-year IMPACT FACTOR: 1.690
Rank 18 out of 312 in category Mathematics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 3.614
Source Normalized Impact per Paper (SNIP) 2015: 1.901
Impact per Publication (IPP) 2015: 1.302

Mathematical Citation Quotient (MCQ) 2015: 1.53

299,00 € / $449.00 / £225.00*

Online
ISSN
1435-5345
See all formats and pricing
Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

Ring completion of rig categories

1Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

2Department of Mathematics, University of Bergen, 5008 Bergen, Norway

3Department Mathematik der Universität Hamburg, 20146 Hamburg, Germany

4Department of Mathematics, University of Oslo, 0316 Oslo, Norway

Citation Information: Journal für die reine und angewandte Mathematik (Crelles Journal). Volume 2013, Issue 674, Pages 43–80, ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: 10.1515/crelle.2012.024, March 2012

Publication History

Received:
2009-09-15
Revised:
2010-08-23
Published Online:
2012-03-23

Abstract

We offer a solution to the long-standing problem of group completing within the context of rig categories (also known as bimonoidal categories). Given a rig category ℛ we construct a natural additive group completion ℛ̅ that retains the multiplicative structure, hence has become a ring category. If we start with a commutative rig category ℛ (also known as a symmetric bimonoidal category), the additive group completion ℛ̅ will be a commutative ring category. In an accompanying paper we show how to use this construction to prove the conjecture that the algebraic K-theory of the connective topological K-theory ring spectrum ku is equivalent to the algebraic K-theory of the rig category 𝒱 of complex vector spaces.

Comments (0)

Please log in or register to comment.