On Graphs with Disjoint Dominating and 2-Dominating Sets : Discussiones Mathematicae Graph Theory

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Discussiones Mathematicae Graph Theory

The Journal of University of Zielona Góra


IMPACT FACTOR 2014: 0.282

SCImago Journal Rank (SJR) 2014: 0.540
Source Normalized Impact per Paper (SNIP) 2014: 0.853
Impact per Publication (IPP) 2014: 0.393

Mathematical Citation Quotient (MCQ) 2014: 0.26

Open Access

On Graphs with Disjoint Dominating and 2-Dominating Sets

1Department of Mathematics University of Johannesburg Auckland Park, 2006 South Africa

2Department of Mathematics Furman University Greenville, SC, USA

This content is open access.

Citation Information: Discussiones Mathematicae Graph Theory. Volume 33, Issue 1, Pages 139–146, ISSN (Print) 2083-5892, DOI: 10.7151/dmgt.1652, April 2013

Publication History

Published Online:
2013-04-13

Abstract

A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the graph.

Keywords: domination; 2-domination; vertex partition

  • [1] M. Dorfling, W. Goddard, M.A. Henning and C.M. Mynhardt, Construction of trees and graphs with equal domination parameters, DiscreteMath. 306 (2006) 2647-2654. doi:10.1016/j.disc.2006.04.031 [CrossRef]

  • [2] S.M. Hedetniemi, S.T. Hedetniemi, R.C. Laskar, L. Markus and P.J. Slater, Disjoint dominating sets in graphs, Proc. ICDM 2006, Ramanujan Mathematics Society Lecture Notes Series 7 (2008) 87-100.

  • [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

  • [4] M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451-6458. doi:10.1016/j.disc.2009.06.017 [Web of Science] [CrossRef]

  • [5] M.A. Henning, C. Löwenstein and D. Rautenbach, An independent dominating set in the complement of a minimum dominating set of a tree, Appl. Math. Lett. 23 (2010) 79-81. doi:10.1016/j.aml.2009.08.008 [CrossRef] [Web of Science]

  • [6] M.A. Henning, C. Löwenstein and D. Rautenbach, Partitioning a graph into a dominating set, a total dominating set, and something else, Discuss. Math. Graph Theory 30 (2010) 563-574. doi:10.7151/dmgt.1514 [CrossRef]

  • [7] M.A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159-162.

  • [8] M.A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, Quaest. Math. 32 (2009) 119-129. [Web of Science] [CrossRef]

  • [9] O. Ore, Theory of Graphs: Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI, 1962).

  • [10] J. Southey and M.A. Henning, Dominating and total dominating partitions in cubic graphs, Central European J. Math. 9(3) (2011) 699-708. doi:10.7151/s11533-011-0014-2 [CrossRef]

  • [11] J. Southey and M.A. Henning, A characterization of graphs with disjoint dominating and paired-dominating sets, J. Comb. Optim. 22 (2011) 217-234. doi:10.1007/s10878-009-9274-1 [CrossRef] [Web of Science]

  • [12] B. Zelinka, Total domatic number and degrees of vertices of a graph, Math. Slovaca 39 (1989) 7-11.

Comments (0)

Please log in or register to comment.