The environmental impact of gold mines: pollution by heavy metals : Open Engineering Jump to ContentJump to Main Navigation
Show Summary Details

Open Engineering

formerly Central European Journal of Engineering

Open Access
Online
ISSN
2391-5439
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

The environmental impact of gold mines: pollution by heavy metals

1Department of Mechanical & Industrial Engineering, College of Engineering, Sultan Qaboos University, Al Khoudh, Sultanate of Oman

2College of Engineering, Sultan Qaboos University, Al Khoudh, Sultanate of Oman

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Engineering. Volume 2, Issue 2, Pages 304–313, ISSN (Online) 2391-5439, DOI: 10.2478/s13531-011-0052-3, April 2012

Publication History

Published Online:
2012-04-11

Abstract

The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

Keywords: Environment; Gold mining; Heavy metals; Pollution; Tailings; Soil; Water

  • [1] Donkor A.K., Bonzongo J.-C.J., Nartey V.K., Adotey D.K., Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa, Soil and Sediment Contamination, 14(6), 2005, 479–503 http://dx.doi.org/10.1080/15320380500263675 [CrossRef]

  • [2] Cooke J.A., Johnson M.S., Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice, Environ. Rev., 10(1), 2002, 41–71 http://dx.doi.org/10.1139/a01-014 [CrossRef]

  • [3] Ledin M., Pedersen K., The environmental impact of mine wastes — Roles of microorganisms and their significance in treatment of mine wastes, Earth Sci. Rev., 41(1–2), 1996, 67–108 http://dx.doi.org/10.1016/0012-8252(96)00016-5 [CrossRef]

  • [4] Getaneh W., Alemayehu T., Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia, Environ. Geol., 50(3), 2006, 339–352 http://dx.doi.org/10.1007/s00254-006-0213-5 [CrossRef]

  • [5] Franco-Hernández M.O., Vásquez-Murrieta M.S., Patiño-Siciliano A., Dendooven L., Heavy metals concentration in plants growing on mine tailings in Central Mexico, Bioresource Technol., 101(11), 2010, 3864–3869 http://dx.doi.org/10.1016/j.biortech.2010.01.013 [Web of Science] [CrossRef]

  • [6] González I., Jordán M.M., Sanfeliu T., Quiroz M., De La Fuente C., Mineralogy and heavy metal content in sediments from Rio Gato, Carelmapu and Cucao, Southern Chile, Environ. Geol., 52(7), 2007, 1243–1251 [Web of Science] [CrossRef]

  • [7] Grimalt J.O., Ferrer M., MacPherson E., The mine tailing accident in Aznalcollar, Sci. Total Environ., 242(1–3), 1999, 3–11 [CrossRef]

  • [8] Eisler R., Health risks of gold miners: A synoptic review, Environ. Geochem. Health, 25(3), 2003, 325–345 http://dx.doi.org/10.1023/A:1024573701073 [CrossRef]

  • [9] Eisler R., Arsenic hazards to humans, plants, and animals from gold mining, Rev. Environ. Contam. T., 180, 2004, 133–165 http://dx.doi.org/10.1007/0-387-21729-0_3 [CrossRef]

  • [10] Eisler R., Mercury hazards from gold mining to humans, plants, and animals, Rev. Environ. Contam. T., 181, 2005, 139–198 http://dx.doi.org/10.1007/0-387-21733-9_4 [CrossRef]

  • [11] Kim K.-K., Kim K.-W., Kim J.-Y., Kim I.S., Cheong Y.-W., Min J.-S., Characteristics of tailings from the closed metal mines as potential contamination source in South Korea, Environ. Geol., 41(3–4), 2001, 358–364 http://dx.doi.org/10.1007/s002540100396 [CrossRef]

  • [12] Kim K.W., Lee H.K., Yoo B.C., The environmental impact of gold mines in the Yugu-Kwangcheon Au-Ag Metallogenic Province, Republic of Korea, Environ. Technol., 19(3), 1998, 291–298 http://dx.doi.org/10.1080/09593331908616683 [CrossRef]

  • [13] Jung M.C., Thornton I., Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea, Appl. Geochem., 11(1–2), 1996, 53–59 http://dx.doi.org/10.1016/0883-2927(95)00075-5 [CrossRef]

  • [14] Aslibekian O., Moles R., Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, Co Tipperary, Ireland, Environ. Geochem. Health, 25(2), 2003, 247–266 http://dx.doi.org/10.1023/A:1023251102402 [CrossRef]

  • [15] Grzebisz W., Ciesla L., Komisarek J., Potarzycki J., Geochemical Assessment of Heavy Metals Pollution of Urban Soils, Pol. J. Environ. Stud., 11(5), 2002, 493–499

  • [16] Patel K.S., Shrivas K., Brandt R., Jakubowski N., Corns W., Hoffmann P., Arsenic contamination in water, soil, sediment and rice of central India, Environ. Geochem. Health 27(2), 2005, 131–145 http://dx.doi.org/10.1007/s10653-005-0120-9 [CrossRef]

  • [17] Crounse R.G., Pories W.J., Bray J.T., Mauger R.L., Geochemistry and man: health and disease. 1. Essential elements, Appl. Environ. Geochem., 1983, 267–308

  • [18] Lottermoser B.G., Gold in municipal sewage sludges: A review on concentrations, sources and potential extraction, J. Solid. Waste. Tech. Manag., 27(2), 2001, 69–75

  • [19] Rowe Jr. G.L., Reutter D.C., Runkle D.L., Hambrook J.A., Janosy S.D., Hwang L.H., Water quality in the Great and Little Miami River Basins, Ohio and Indiana, 1999–2001. US Geol. Surv. Circular, (1229), 2004a, iv-32

  • [20] Rowe J., McKnight S., Hall S., The biological oxidation of carbonaceous material in the treatment of a refractory gold bearing ore, Australasian Institute of Mining and Metallurgy Publication Series, 2004b, 173–174

  • [21] Thornton I., Impacts of mining on the environment; some local, regional and global issues, Appl. Geochem., 11(1–2), 1996, 355–361 http://dx.doi.org/10.1016/0883-2927(95)00064-X [CrossRef]

  • [22] Fayiga A.O., Ma L.Q., Cao X., Rathinasabapathi B., Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L, Environ. Pollut., 132(2), 2004, 289–296 http://dx.doi.org/10.1016/j.envpol.2004.04.020 [CrossRef]

  • [23] Fayiga A.O., Ma L.Q., Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils, Water Air. Soil. Pollut., 168(1–4), 2005, 71–89 http://dx.doi.org/10.1007/s11270-005-0612-3 [CrossRef]

  • [24] Fayiga A.O., Ma L.Q., Santos J., Rathinasabapathi B., Stamps B., Littell R.C., Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system, International Journal of Phytoremediation, 7(3), 2005, 231–240 http://dx.doi.org/10.1080/16226510500215720 [CrossRef]

  • [25] Fayiga A.O., Ma L.Q., Zhou Q., Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil, Environ. Pollut., 147(3), 2007, 737–742 http://dx.doi.org/10.1016/j.envpol.2006.09.010 [CrossRef]

  • [26] Monni S., Uhlig C., Hansen E., Magel E., Ecophysiological responses of Empetrum nigrum to heavy metal pollution, Environ. Pollut., 112(2), 2001, 121–129 http://dx.doi.org/10.1016/S0269-7491(00)00125-1 [CrossRef]

  • [27] Ashley P.M., Lottermoser B.G., Arsenic contamination at the Mole River mine, northern New South Wales, Aust. J. Earth. Sci., 46(6), 1999, 861–874 http://dx.doi.org/10.1046/j.1440-0952.1999.00748.x [CrossRef]

  • [28] Lottermoser B.G., Ashley P.M., Lawie D.C., Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia, Environ. Geol., 39(1), 2000, 61–74 http://dx.doi.org/10.1007/s002540050437 [CrossRef]

  • [29] Ogola J.S., Mitullah W.V., Omulo M.A., Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya, Environ. Geochem. Health, 24(2), 2002, 141–158 http://dx.doi.org/10.1023/A:1014207832471 [CrossRef]

  • [30] Miller J.R., Hudson-Edwards K.A., Lechler P.J., Preston D., Macklin M.G., Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia, Sci. Total Environ., 320(2–3), 2004, 189–209 http://dx.doi.org/10.1016/j.scitotenv.2003.08.011 [CrossRef]

  • [31] Von Der Heyden C.J., New M.G., Groundwater pollution on the Zambian Copperbelt: Deciphering the source and the risk, Sci. Total Environ. 327(1–3), 2004, 17–30

  • [32] El-Moselhy K.M., Gabal M.N., Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea, J. Mar. Syst., 46(1–4), 2004, 39–46 http://dx.doi.org/10.1016/j.jmarsys.2003.11.014 [CrossRef]

  • [33] Lottermoser B.G., Ashley P.M., Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia, J. Geochem. Explor., 85(3), 2005, 119–137 http://dx.doi.org/10.1016/j.gexplo.2005.01.001 [CrossRef]

  • [34] Nordstrom D.K., Alpers C.N., Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California, Proceedings of the National Academy of Sciences of the United States of America, 96(7), 1999, 3455–3462 http://dx.doi.org/10.1073/pnas.96.7.3455 [CrossRef]

  • [35] Nordstrom D.K., Advances in the hydrogeochemistry and microbiology of acid mine waters, Int. Geol. Rev., 42(6), 2000, 499–515 http://dx.doi.org/10.1080/00206810009465095 [CrossRef]

  • [36] Nordstrom D.K., Alpers C.N., Ptacek C.J., Blowes D.W., Negative pH and extremely acidic mine waters from Iron Mountain, California, Environ. Sci. Tech., 34(2), 2000, 254–258 [CrossRef]

  • [37] Harries J.R., Ritchie A.I.M., Pore gas composition in waste rock dumps undergoing pyritic oxidation, Soil Sci., 140(2), 1985, 143–152 http://dx.doi.org/10.1097/00010694-198508000-00010 [CrossRef]

  • [38] Lefebvre R., Hockley D., Smolensky J., Gélinas P., Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: Conceptual model and system characterization, J. Contam. Hydrol., 52(1–4), 2001, 137–164 http://dx.doi.org/10.1016/S0169-7722(01)00156-5 [CrossRef]

  • [39] Lo J.M., Sakamoto H., Comparison of the acid combinations in microwave-assisted digestion of marine sediments for heavy metals analyses, Anal. Sci., 21(10), 2005, 1181–1184 http://dx.doi.org/10.2116/analsci.21.1181 [CrossRef]

  • [40] Boisson J., Ruttens A., Mench M., Vangronsveld J., Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation, Environ. Pollut., 104(2), 1999, 225–233 http://dx.doi.org/10.1016/S0269-7491(98)00184-5 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. R. Salakinkop and C. S. Hunshal
International Journal of Recycling of Organic Waste in Agriculture, 2014, Volume 3, Number 3, Page 1

Comments (0)

Please log in or register to comment.