A power efficient bandwidth regulation technique for a low-noise high-gain RF wideband amplifier : Open Engineering Jump to ContentJump to Main Navigation
Show Summary Details

Open Engineering

formerly Central European Journal of Engineering

Open Access
See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

A power efficient bandwidth regulation technique for a low-noise high-gain RF wideband amplifier

1Department of Electrical and Electronic Engineering, Bangladesh Univ. of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Engineering. Volume 2, Issue 3, Pages 383–391, ISSN (Online) 2391-5439, DOI: 10.2478/s13531-012-0009-1, July 2012

Publication History

Published Online:


In this paper, a single-stage deep sub-micron wideband amplifier (LNA) using a reactive resonance tank and passive port-matching techniques is demonstrated operating in the microwave frequency range (K band). A novel power-efficient bandwidth (BW) regulation technique is proposed by incorporating a small impedance in the resonance tank of the amplifier configuration. It manifests a forward gain in the range of 5.9–10.7 dB covering a message bandwidth of 10.6–6.3 GHz. With regulation, input-output reflection parameters (S 11, S 22) and noise figure can be manipulated by −12.7 dB, −22.7 dB and 0.36 dB, respectively. Symmetric regulation is achieved for bandwidth and small signal gain with respect to moderate tank impedance (36.5% and −26.8%, respectively) but the effect on noise contribution remains relatively low (increase of 7% from a base value of 2.39 dB). The regulated architecture, when analyzed with 90 nm silicon CMOS process, supports low power (9.1 mW) on-chip communication. The circuit is tested with a number of combinations for tank (drain) impedance to verify the efficiency of the proposed technique and achieves better figures of merit when compared with published literature.

Keywords: Bandwidth regulation; Wideband amplifier; High gain; 90 nm

  • [1] Saraswat K.C., Mohammadi F., Effect of interconnection scaling on time delay of VLSI circuits, IEEE TED, 1982, 29, 645–650 http://dx.doi.org/10.1109/T-ED.1982.20757 [CrossRef]

  • [2] Sun M., Zhang Y.P., Zheng G.X., Yin W.Y., Performance of Intra-Chip Wireless Interconnect Using On-Chip Antennas and UWB Radios, IEEE TAP, 2009, 57, 2756–2762

  • [3] Lager I.E., De Hoop A.T., Inter-chip and intra-chip pulsed signal transfer between transmitting and receiving loops in wireless interconnect configurations, In: Proceedings of European Microwave Conf. (Sept. 28–30, 2010 Paris France), 2010, 577–580

  • [4] Chang M.F., Roychowdhury V.P., Zhang L., Shin H., Qian Y., RF/wireless interconnect for inter- and intra- chip communications, Proceedings of the IEEE, 2001, 89, 456–466 http://dx.doi.org/10.1109/5.920578 [CrossRef]

  • [5] Casu M.R., Durisi G., Implementation aspects of a transmitted-reference UWB receiver, Journal of Wireless Communications and Mobile Computing, 2005, 5, 551–566 http://dx.doi.org/10.1002/wcm.309 [CrossRef]

  • [6] Malik W.Q., Stevens C.J., Edwards D.J., Multipath Effects in Ultrawideband Rake Reception, IEEE TAP, 2008, 56, 507–514 [Web of Science]

  • [7] Saha P.K., Sasaki N., Kikkawa T., A CMOS Monocycle Pulse Generation Circuit in a Ultra- Wideband Transmitter for Intra/Inter Chip Wireless Interconnection, Japanese Journal of Applied Physics, 2005, 44, 2104–2108 http://dx.doi.org/10.1143/JJAP.44.2104 [CrossRef]

  • [8] Chen M., Lin J., A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS, IEEE MWCL, 2009, 19, 323–325

  • [9] Kim J., Hoyos S., Silva-Martinez J., Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization, IEEE TMTT, 2010, 58, 2340–2351 [Web of Science]

  • [10] Leung B., VLSI for Wireless Communication, 1st ed., Prentice Hall India, New Delhi, 2002

  • [11] Doan C.H., Emami S., Niknejad A.M., Broadersen R.W., Millimeter-wave CMOS design, IEEE JSSC, 2005, 40, 144–155

  • [12] Wang T.P., Wang H., A Broadband 42–63 GHz Amplifier Using 0.13 μm CMOS Technology, In: Proceedings of IEEE/MTT-S Int. Microwave Symposium (June 3–8, 2007 Honolulu Hawaii), 2007, 1779–1782

  • [13] Masud M.A., Zirath H., Ferndahl M., Vickes H.O., 90 nm CMOS MMIC amplifier, In: Proceedings of IEEE RFIC Symp. (June 6–8, 2004 Fort Worth Texas), 2004, 201–204

  • [14] Rashid S., Ali S., Roy A., Rashid H., A 36.1 GHz Single Stage Low Noise Amplifier Using 0.13 μm CMOS Process, In: Proceedings of World Cong. on Comp. Science and Information Eng. (March 31–April 2, 2009 LA USA), 2009, 480–483

  • [15] Rashid S., Ali S., Roy A., Rashid H., Gain-Bandwidth Adjusting Techinque of A 36.1 GHz Single Stage Low Noise Amplifier Using 0.13 μm CMOS Process, In: Proceedings of Int. Conf. on Advanced Communication Tech. (Feb. 15–18, 2009 Phoenix Park Korea), 2009, 184–188

  • [16] Matthaei G.L., Young L., Jones E., Microwave Filters, Impedance-Matching Networks and Coupling Structures, New York: McGraw-Hill, 1964.

  • [17] Tsai J.H., Chen W.C., Wang T.P., et al., A miniature Q-band low noise amplifier using 0.13 μm CMOS technology, IEEE MWCL, 2006, 16, 327–329

  • [18] Sanduleanu M.A.T., Zhang G., Long J.R., 31–34 GHz Low Noise Amplifier with On-chip microstrip Lines and Inter-stage Matching in 90nm Baseline CMOS, In: Proceedings of Radio Frequency Integrated Circuits Symp. (June 11–13, 2006 San Francisco California), 2006, 143–146

  • [19] Haque M.A., Hossain M.S., Ahmed S., Rashid H., 18.2 GHz Differential Low Noise Amplifier for On- Chip Ultra Wide Band Transceiver, In: Proceedings of IEEE Region 10 Conf. (Nov. 14–17, 2006 Hong Kong), 2006, 1–4

  • [20] Guo X., O K.K., A Power Efficient Differential 20 GHz Low Noise Amplifier With 5.3 GHz 3 dB Bandwidth, IEEE MWCL, 2005, 15, 603–605

  • [21] Floyd B., Shi L., Taur Y., Lagnado I., et al., 15-GHz wireless interconnect implemented in a 0.18 μm CMOS technology using integrated transmitters, receivers, and antennas, In: Proceedings of VLSI Symp. Circuits (June 14–16, 2001 Kyoto Japan), 2001, 155–158

  • [22] Yu Y.H., Chen Y.J.E., Heo D., A 0.6 V low power UWB CMOS LNA, IEEE MWCL, 2007, 17, 229–231

Comments (0)

Please log in or register to comment.