[1] A. Erdélyi, On fractional integration and its applications to the theory of Hankel transforms. Quart. J. Math. Oxford
11, No 1 (1940), 293–303. http://dx.doi.org/10.1093/qmath/os-11.1.293 [CrossRef]

[2] R. Gorenflo, Yu. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal.
2, No 4 (1999), 383–414; http://www.math.bas.bg/~fcaa

[3] R. Gorenflo, Yu. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Math.
118, No 1–2 (2000), 175–191. http://dx.doi.org/10.1016/S0377-0427(00)00288-0 [CrossRef]

[4] R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics
193, (2011), 119–132. http://dx.doi.org/10.1140/epjst/e2011-01386-2 [CrossRef]

[5] R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: Fractional Dynamics. Recent Advances, World Scientific, Singapore (2011), Chapter 10, 227–261.

[6] P. Grigolini, A. Rocco, B.J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E
59, No 3 (1999), 2603–2613. http://dx.doi.org/10.1103/PhysRevE.59.2603 [CrossRef]

[7] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical and J. Wiley, Harlow - N. York (1994).

[8] J. Klafter, I.M. Sokolov, Anomalous diffusion spreads its wings. Physics World, August (2005), 29–32.

[9] H. Kober, On a fractional integral and derivative. Quart. J. Math. Oxford
11, No 1 (1940), 193–211. http://dx.doi.org/10.1093/qmath/os-11.1.193 [CrossRef]

[10] Yu. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal.
7, No 3 (2004), 339–364; http://www.math.bas.bg/~fcaa

[11] Yu. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal.
10, No 3 (2007), 249–267; http://www.math.bas.bg/~fcaa

[12] B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience
11, No 11 (2008), 1335–1342. http://dx.doi.org/10.1038/nn.2212 [CrossRef] [Web of Science]

[13] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals
7, No 9 (1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5 [CrossRef]

[14] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). http://dx.doi.org/10.1142/9781848163300 [CrossRef]

[15] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal.
4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa

[16] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations
2010, (2010), 104505.

[17] F. Mainardi, G. Pagnini, The role of the Fox-Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math.
207, No 2 (2007), 245–257. http://dx.doi.org/10.1016/j.cam.2006.10.014 [CrossRef]

[18] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal.
6, No 4 (2003), 441–459; http://www.math.bas.bg/~fcaa

[19] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Gen.
37, No 31 (2004), R161–R208. http://dx.doi.org/10.1088/0305-4470/37/31/R01 [CrossRef]

[20] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Ph.D. Thesis, University of Bologna (2008); http://amsdottorato.cib.unibo.it/846/1/TesiMuraAntonio.pdf, Now available by Lambert Academic Publishing (2011).

[21] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. Funct.
20, No 3 (2009), 185–198. http://dx.doi.org/10.1080/10652460802567517 [CrossRef] [Web of Science]

[22] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor.
41, No 28 (2008), 285003. http://dx.doi.org/10.1088/1751-8113/41/28/285003 [CrossRef]

[23] A. Mura, M.S. Taqqu, F. Mainardi, Non-Markovian diffusion equations and processes: Analysis and simulations. Physica A
387, No 21 (2008), 5033–5064. http://dx.doi.org/10.1016/j.physa.2008.04.035 [Web of Science] [CrossRef]

[24] G. Pagnini, Nonlinear time-fractional differential equations in combustion science. Fract. Calc. Appl. Anal.
14, No 1 (2011), 80–93; http://www.springerlink.com/content/1311-0454/14/1/ http://dx.doi.org/10.2478/s13540-011-0006-8 [CrossRef]

[25] G. Pagnini, The evolution equation for the radius of a premixed flame ball in fractional diffusive media. Eur. Phys. J. Special Topics
193, (2011), 105–117. http://dx.doi.org/10.1140/epjst/e2011-01385-3 [CrossRef]

[26] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

[27] A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Physica A
265, No 3–4 (1999), 535–546. http://dx.doi.org/10.1016/S0378-4371(98)00550-0 [CrossRef]

[28] R.K. Saxena, G. Pagnini, Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case. Physica A
390, No 4 (2011), 602–613. http://dx.doi.org/10.1016/j.physa.2010.10.012 [CrossRef] [Web of Science]

[29] E. Scalas, The application of continuous-time random walks in finance and economics. Physica A
362, No 2 (2006), 225–239. http://dx.doi.org/10.1016/j.physa.2005.11.024 [CrossRef]

[30] W.R. Schneider, Grey noise. In: Stochastic Processes, Physics and Geometry, World Scientific, Teaneck (1990), 676–681.

[31] W.R. Schneider, Grey noise. In: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Vol. I, Cambridge University Press, Cambridge (1992), 261–282.

[32] I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory. North-Holland Publ., Amsterdam (1966).

[33] I.N. Sneddon, The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications, In: Lect. Notes Math.
457, Springer-Verlag, New York (1975), 37–79. [CrossRef]

[34] I.N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics. RWN — Polish Sci. Publ., Warszawa-Poznan (1979).

[35] I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Pol. B
35, No 4 (2004), 1323–1341.

[36] J.A. Tenreiro Machado, And I say to myself: “What a fractional world!”. Fract. Calc. Appl. Anal.
14, No 4 (2011), 635–654; http://www.springerlink.com/content/1311-0454/14/4/ http://dx.doi.org/10.2478/s13540-011-0037-1 [CrossRef]

[37] B.M. Vinagre, I. Podlubny, A. Hernández, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal.
3, No 3 (2000), 231–248; http://www.math.bas.bg/~fcaa

## Comments (0)