Jump to ContentJump to Main Navigation
Show Summary Details

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

IMPACT FACTOR increased in 2015: 2.246
Rank 10 out of 312 in category Mathematics, 9 out of 254 in Applied Mathematics and 15 out of 101 in Mathematics, Interdisciplinary Applications in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404
Impact per Publication (IPP) 2015: 2.218

Mathematical Citation Quotient (MCQ) 2015: 0.61

99,00 € / $149.00 / £75.00*

See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Fuzzy fractional integral equations under compactness type condition

1Department of Mathematics, Texas A&M University-Kingvsille, 700 University Blvd., Kingsville, TX, 78363-8202, USA

2Abdus Salam School of Mathematical Sciences GC University, 68-B New Muslim Town, Lahore, Pakistan

3School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, University Road, Galway, Ireland

4Constantin Brancusi University, Republicii 1, 210152, Targu-Jiu, Romania

© 2012 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Fractional Calculus and Applied Analysis. Volume 15, Issue 4, Pages 572–590, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: 10.2478/s13540-012-0040-1, September 2012

Publication History

Published Online:


In this paper we study a fuzzy fractional integral equation. The fractional derivative is considered in the sense of Riemann-Liouville and we establish existence of the solutions of fuzzy fractional integral equations using the Hausdorff measure of noncompactness.

MSC: Primary 26A33; Secondary 34A07, 45D05, 47H08, 74H20

Keywords: fractional calculus; fuzzy fractional integral equation; measure of noncompactness; existence of solution

  • [1] R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 74 (2010), 2859–2862. http://dx.doi.org/10.1016/j.na.2009.11.029 [CrossRef]

  • [2] R.P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Difference Equ. (2009) Article ID 981728, 47pp.

  • [3] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundry value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033. http://dx.doi.org/10.1007/s10440-008-9356-6 [CrossRef]

  • [4] R.P. Agarwal, Y. Zhou, J. Wang, X. Luo, Fractional functional differential equations with causal operators in Banach spaces. Mathematical and Compututer Modelling 54 (2011), 1440–1452. http://dx.doi.org/10.1016/j.mcm.2011.04.016 [CrossRef]

  • [5] R. Alikhani, F. Bahrami, A. Jabbari, Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. Nonlinear Anal. 75 (2012), 1810–1821. http://dx.doi.org/10.1016/j.na.2011.09.021 [CrossRef]

  • [6] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty. Soft Computing 16, No 2 (2012), 297–302. http://dx.doi.org/10.1007/s00500-011-0743-y [CrossRef] [Web of Science]

  • [7] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty. Nonlinear Anal. 74 (2011), 3685–3693. http://dx.doi.org/10.1016/j.na.2011.02.048 [CrossRef]

  • [8] S. Arshad, V. Lupulescu, Fractional differential equation with fuzzy initial condition. Electronic J. of Differential Equations 2011 (2011), 1–8.

  • [9] M. Benchohra, M. A. Darwish, Existence and uniqueness theorem for fuzzy integral equations of fractional order. Communications in Applied Analysis 12 (2008), 13–22.

  • [10] W. Congxin, S. Shiji, Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inform. Sci. 108 (1998), 123–134. http://dx.doi.org/10.1016/S0020-0255(97)10064-0 [CrossRef]

  • [11] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin-Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7 [CrossRef]

  • [12] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets. World Scientific, Singapore, 1994.

  • [13] K. Diethelm, An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. and Appl. Anal. 14, No 3 (2011), 475–490; DOI: 10.2478/s13540-011-0029-1; at http://www.springerlink.com/content/1311-0454/14/3/. [CrossRef]

  • [14] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2004.

  • [15] K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus. Fract. Calc. and Appl. Anal. 15, No 2 (2012), 304–313; DOI: 10.2478/s13540-012-0022-3; at http://www.springerlink.com/content/1311-0454/15/2/. [CrossRef]

  • [16] T. Donchev, A. Nosheen, On the solution set of fuzzy systems. In: Nonlinear Anal., 2012.

  • [17] A.M.A. El-Sayed, A.-G. Ibrahim, Set-valued integral equations of fractional-orders. Applied Mathematics and Computation 118 (2001), 113–121. http://dx.doi.org/10.1016/S0096-3003(99)00087-9 [CrossRef]

  • [18] S.R. Grace, R.P. Agarwal, P.J.Y. Wong and A. Zafer, On the oscillation of fractional differential equations. Fract. Calc. and Appl. Anal. 15, No 2 (2012), 222–231; DOI: 10.2478/s13540-012-0016-1; at http://www.springerlink.com/content/1311-0454/15/2/. [CrossRef]

  • [19] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, 1997.

  • [20] O. Kaleva, The Cauchy problem for fuzzy differential equations. Fuzzy Sets and Systems 35 (1990), 389–396. http://dx.doi.org/10.1016/0165-0114(90)90010-4 [Web of Science] [CrossRef]

  • [21] D. Kandilakis, N.S. Papageorgiou, On the properties of the Aumann integral with applications to differential inclusions and control systems. Czech. Math. Journ. 39 (1989), 1–15.

  • [22] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, 2006.

  • [23] M. Kisielewicz, Multivalued differential equations in separable Banach spaces. J. Opt. Theory Appl. 37 (1982), 231–249. http://dx.doi.org/10.1007/BF00934769 [CrossRef]

  • [24] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677–2682. http://dx.doi.org/10.1016/j.na.2007.08.042 [CrossRef]

  • [25] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London, 2003. http://dx.doi.org/10.1201/9780203011386 [CrossRef]

  • [26] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York, 1969.

  • [27] V. Lupulescu, Causal functional differential equations in Banach spaces. Nonlinear Anal. 69 (2008), 4787–4795. http://dx.doi.org/10.1016/j.na.2007.11.028 [CrossRef]

  • [28] M.T. Malinowski, Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Analysis: Real World Applications 13, No 2 (2012), 860–881. http://dx.doi.org/10.1016/j.nonrwa.2011.08.022 [CrossRef]

  • [29] K.S. Miller, B. Ross, An introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York, 1993.

  • [30] C.V. Negoita, D. Ralescu, Applications of Fuzzy Sets to Systems Analysis. Wiley, New York, 1975.

  • [31] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to an arbitrary order. Academic Press, New York — London, 1974.

  • [32] N.S. Papageorgiou, Existence of solutions for integrodifferential inclusions in Banach spaces. Commentationes Mathematicae Universitatis Carolinae 32, No 4 (1991), 687–696.

  • [33] J.Y. Park, H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations. Fuzzy Sets and Systems 105 (1999), 481–488. http://dx.doi.org/10.1016/S0165-0114(97)00238-8 [CrossRef]

  • [34] M. Puri, D. Ralescu, Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409–422. http://dx.doi.org/10.1016/0022-247X(86)90093-4 [CrossRef]

  • [35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 [CrossRef]

  • [36] S. Song, Q. Liu, Q. Xu, Existence and comparison theorems to Volterra fuzzy integral equations in (E n,D). Fuzzy Sets and Systems 104 (1999), 315–321. http://dx.doi.org/10.1016/S0165-0114(97)00211-X [CrossRef]

  • [37] H. Wang, Y. Liu, Existence results for fuzzy integral equations of fractional order. Int. Journal of Math. Analysis 5 (2011), 811–818.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vasile Lupulescu and Ngo Van Hoa
Soft Computing, 2016
Vasile Lupulescu, Le Si Dong, and Ngo Van Hoa
Journal of Intelligent & Fuzzy Systems, 2015, Volume 29, Number 1, Page 27
P Prakash, JJ Nieto, S Senthilvelavan, and G Sudha Priya
Journal of Intelligent & Fuzzy Systems, 2015, Volume 28, Number 6, Page 2691
P. Balasubramaniam, P. Muthukumar, and K. Ratnavelu
Nonlinear Dynamics, 2015, Volume 80, Number 1-2, Page 249
Sadia Arshad, Vasile Lupulescu, and Donal O’Regan
Fractional Calculus and Applied Analysis, 2014, Volume 17, Number 1
Ngo Van Hoa
Communications in Nonlinear Science and Numerical Simulation, 2015, Volume 22, Number 1-3, Page 1134
Djurdjica Takači, Arpad Takači, and Aleksandar Takači
Fractional Calculus and Applied Analysis, 2014, Volume 17, Number 4
Ngo Hoa, Nguyen Phu, Tran Tung, and Le Quang
Advances in Difference Equations, 2014, Volume 2014, Number 1, Page 177
Vasile Lupulescu
Fuzzy Sets and Systems, 2015, Volume 265, Page 63
T. Allahviranloo, S. Abbasbandy, M. R. Balooch Shahryari, S. Salahshour, and D. Baleanu
Abstract and Applied Analysis, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.