[1] R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 74 (2010), 2859–2862. http://dx.doi.org/10.1016/j.na.2009.11.029 [CrossRef]

[2] R.P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Difference Equ. (2009) Article ID 981728, 47pp.

[3] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundry value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033. http://dx.doi.org/10.1007/s10440-008-9356-6 [CrossRef]

[4] R.P. Agarwal, Y. Zhou, J. Wang, X. Luo, Fractional functional differential equations with causal operators in Banach spaces. Mathematical and Compututer Modelling
54 (2011), 1440–1452. http://dx.doi.org/10.1016/j.mcm.2011.04.016 [CrossRef]

[5] R. Alikhani, F. Bahrami, A. Jabbari, Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. Nonlinear Anal.
75 (2012), 1810–1821. http://dx.doi.org/10.1016/j.na.2011.09.021 [CrossRef]

[6] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty. Soft Computing
16, No 2 (2012), 297–302. http://dx.doi.org/10.1007/s00500-011-0743-y [CrossRef] [Web of Science]

[7] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty. Nonlinear Anal. 74 (2011), 3685–3693. http://dx.doi.org/10.1016/j.na.2011.02.048 [CrossRef]

[8] S. Arshad, V. Lupulescu, Fractional differential equation with fuzzy initial condition. Electronic J. of Differential Equations
2011 (2011), 1–8.

[9] M. Benchohra, M. A. Darwish, Existence and uniqueness theorem for fuzzy integral equations of fractional order. Communications in Applied Analysis
12 (2008), 13–22.

[10] W. Congxin, S. Shiji, Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inform. Sci. 108 (1998), 123–134. http://dx.doi.org/10.1016/S0020-0255(97)10064-0 [CrossRef]

[11] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin-Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7 [CrossRef]

[12] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets. World Scientific, Singapore, 1994.

[13] K. Diethelm, An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. and Appl. Anal. 14, No 3 (2011), 475–490; DOI: 10.2478/s13540-011-0029-1; at http://www.springerlink.com/content/1311-0454/14/3/. [CrossRef]

[14] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2004.

[15] K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus. Fract. Calc. and Appl. Anal. 15, No 2 (2012), 304–313; DOI: 10.2478/s13540-012-0022-3; at http://www.springerlink.com/content/1311-0454/15/2/. [CrossRef]

[16] T. Donchev, A. Nosheen, On the solution set of fuzzy systems. In: Nonlinear Anal., 2012.

[17] A.M.A. El-Sayed, A.-G. Ibrahim, Set-valued integral equations of fractional-orders. Applied Mathematics and Computation
118 (2001), 113–121. http://dx.doi.org/10.1016/S0096-3003(99)00087-9 [CrossRef]

[18] S.R. Grace, R.P. Agarwal, P.J.Y. Wong and A. Zafer, On the oscillation of fractional differential equations. Fract. Calc. and Appl. Anal. 15, No 2 (2012), 222–231; DOI: 10.2478/s13540-012-0016-1; at http://www.springerlink.com/content/1311-0454/15/2/. [CrossRef]

[19] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, 1997.

[20] O. Kaleva, The Cauchy problem for fuzzy differential equations. Fuzzy Sets and Systems
35 (1990), 389–396. http://dx.doi.org/10.1016/0165-0114(90)90010-4 [Web of Science] [CrossRef]

[21] D. Kandilakis, N.S. Papageorgiou, On the properties of the Aumann integral with applications to differential inclusions and control systems. Czech. Math. Journ. 39 (1989), 1–15.

[22] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, 2006.

[23] M. Kisielewicz, Multivalued differential equations in separable Banach spaces. J. Opt. Theory Appl. 37 (1982), 231–249. http://dx.doi.org/10.1007/BF00934769 [CrossRef]

[24] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677–2682. http://dx.doi.org/10.1016/j.na.2007.08.042 [CrossRef]

[25] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London, 2003. http://dx.doi.org/10.1201/9780203011386 [CrossRef]

[26] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, New York, 1969.

[27] V. Lupulescu, Causal functional differential equations in Banach spaces. Nonlinear Anal. 69 (2008), 4787–4795. http://dx.doi.org/10.1016/j.na.2007.11.028 [CrossRef]

[28] M.T. Malinowski, Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Analysis: Real World Applications
13, No 2 (2012), 860–881. http://dx.doi.org/10.1016/j.nonrwa.2011.08.022 [CrossRef]

[29] K.S. Miller, B. Ross, An introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York, 1993.

[30] C.V. Negoita, D. Ralescu, Applications of Fuzzy Sets to Systems Analysis. Wiley, New York, 1975.

[31] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to an arbitrary order. Academic Press, New York — London, 1974.

[32] N.S. Papageorgiou, Existence of solutions for integrodifferential inclusions in Banach spaces. Commentationes Mathematicae Universitatis Carolinae
32, No 4 (1991), 687–696.

[33] J.Y. Park, H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations. Fuzzy Sets and Systems
105 (1999), 481–488. http://dx.doi.org/10.1016/S0165-0114(97)00238-8 [CrossRef]

[34] M. Puri, D. Ralescu, Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409–422. http://dx.doi.org/10.1016/0022-247X(86)90093-4 [CrossRef]

[35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 [CrossRef]

[36] S. Song, Q. Liu, Q. Xu, Existence and comparison theorems to Volterra fuzzy integral equations in (E
n,D). Fuzzy Sets and Systems
104 (1999), 315–321. http://dx.doi.org/10.1016/S0165-0114(97)00211-X [CrossRef]

[37] H. Wang, Y. Liu, Existence results for fuzzy integral equations of fractional order. Int. Journal of Math. Analysis
5 (2011), 811–818.

## Comments (0)