[1] R.P. Agarwal, S. Arshad, D. O’Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition. Fract. Calc. and Appl. Anal. 15, No 4 (2012), 572–590; DOI: 10.2478/s13540-012-0040-1; http://link.springer.com/article/10.2478/s13540-012-0040-1. [CrossRef]

[2] A. Aghajani, E. Pourhadi, J.J. Trujillo, Application of measure of noncompactness to a cauchy problem for fractional differential equations in banach spaces. Fract. Calc. and Appl. Anal. 16, No 4 (2013), 962–977; DOI: 0.2478/s13540-013-0059-y; http://link.springer.com/article/10.2478/s13540-013-0059-y.

[3] T.A. Barton, I.K. Purnaras, L
p-solutions of singular integro-differential equations. J. Math. Anal. Appl., 386 (2012), 830–841. http://dx.doi.org/10.1016/j.jmaa.2011.08.041 [CrossRef]

[4] T.A. Barton, B. Zhang, L
p-solutions of fractional differential equations. Nonlinear Studies
19, No 2 (2012), 161–177.

[5] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2004.

[6] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces. Ser. Mathematics and its Applications, Vol. 373, Kluwer Academic Publishers, Dordrecht-Boston-London, 1996. http://dx.doi.org/10.1007/978-1-4613-1281-9 [CrossRef]

[7] L. Kexue, P. Jigen, G. Jinghuai, Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness. Fract. Calc. and Appl. Anal. 15, No 4 (2012), 591–610; DOI: 10.2478/s13540-012-0041-0; http://link.springer.com/article/10.2478/s13540-012-0041-0. [CrossRef]

[8] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier, New York, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0 [CrossRef]

[9] C. Kuratowski, Sur les espaces complets. Fundamenta Mathematica
51 (1930), 301–309.

[10] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge, 2009.

[11] D. Mamrilla, On L
p-solutions of nth order nonlinear differential equations. Časopis pro pěstování matematiky
113 (1988), 363–368.

[12] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.

[13] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York, 1974.

[14] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

[15] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Sci. Publishers, London-New York 1993.

[16] H.A.H. Salem, M. Väth, An abstract Gronwall lemma and application to global existence results for functional differential and integral equations of fractional order. J. of Integral Equations and Applications
16, No 4 (2004), 441–439. http://dx.doi.org/10.1216/jiea/1181075299 [CrossRef]

## Comments (0)