Jump to ContentJump to Main Navigation

Forestry Journal

The Journal of National Forest Centre – Forest Research Institute Zvolen

4 Issues per year


SCImago Journal Rank (SJR) 2014: 0.153
Source Normalized Impact per Paper (SNIP) 2014: 0.513
Impact per Publication (IPP) 2014: 0.424

Open Access
VolumeIssuePage

Modelling the effects of natural and artificial regeneration on genetic structure. 1. Pure spruce stand

Marian Pacalaj1 / Dušan Gömöry1 / Roman Longauer1

Národné lesnícke centrum-Lesnícky výskumný ústav, T. G. Masaryka 22, SK - 960 92 Zvolen1

Technická univerzita vo Zvolene, Lesnícka fakulta, T. G. Masaryka 24, SK - 960 53 Zvolen2

This content is open access.

Citation Information: Lesnícky casopis - Forestry Journal. Volume 57, Issue 2, Pages 96–112, ISSN (Online) 1338-4295, ISSN (Print) 0323-1046, DOI: 10.2478/v10114-011-0004-0, July 2011

Publication History

Published Online:
2011-07-20

Modelovanie dopadov prirodzenej a umelej obnovy na genetickú štruktúru: 1. nezmiešaný smrekový porast

Táto práca analyzuje priestorovú a časovú variabilitu v samčej a samičej plodnosti jedincov a ich vplyv na genetickú štruktúru potomstva v obhospodarovanom smrekovom poraste. Pre účely modelovania genetickej štruktúry a na posúdenie dopadu rôznych obnovných rubov založených na prirodzenej a umelej obnove na priestorovú genetickú štruktúru, multiplicitu, diverzitu a genotypovú štruktúru potomstva a jeho diferenciáciu od materského porastu bol použitý programový balík Eco-Gene (Degen & Gregorius & Scholz 1996). V lokalite Vyšné Hágy bola založená výskumná plocha s celkovým počtom 200 dospelých stromov. Na ploche bola zameraná pozícia každého stromu, zistená veľkosť, projekcia koruny a odhadnutá produkcia šišiek. Pomocou izoenzýmových genetických markérov z dormantných púčikov bol zistený aj genotyp každého jedinca.

Modelovaním sme porovnali vhodnosť rôznych obnovných rubov z hľadiska reprodukcie genofondu resp. genetickej štruktúry materských porastov. Základným kritériom hodnotenia bola tvorba priestorovej genetickej štruktúry, sekundárnym miera diferenciácie potomstva od materskému porastu a posledným miera genetickej variability v potomstve. Po zohľadnení týchto kritérií sa v nezmiešanom smrekovom poraste ukázal ako najvhodnejší dvojfázový okrajový clonný rub a ako najmenej vhodný (možno prekvapivo) silnejší jednotlivo výberný rub. Ostatné testované ruby - maloplošný prostý jednofázový okrajový, skupinový, skupinovitý clonný a slabší jednotlivo výberný rub sa ukázali ako stredne vhodné a mali na genofond potomstva podobný vplyv.

Modelling the effects of natural and artificial regeneration on genetic structure. 1. Pure spruce stand

The paper focuses on the analysis and assessment of spatial and temporal variation in male and female fertility and their effect on the genetic structure of progeny in a managed stand of a pure Norway spruce. The program package Eco-Gene (Degen & Gregorius & Scholz 1996) was used to model genetic structures and to assess the influence of various regeneration systems based on natural and artificial regeneration on the formation of spatial genetic structure, allelic richness, diversity and genotype structure of progeny, and its differentiation from the maternal stand. The research plot was established in the site Vyšné Hágy with 200 adult trees. For each tree, position in the stand, crown size and its ground projection, and seed fertility were scored in the field. Besides, a multilocus genotype of each tree was determined by isozyme analyses of dormant buds.

Based on the modelling, we compared various silvicultural systems, which should result in a progeny reproducing genetic structures of maternal stands. An important indicator for the evaluation of silvicultural treatments was the formation of spatial genetic structures, as a secondary criterion, we used the differentiation of progeny against mother stand. Finally, we also considered genetic variation of progenies. Considering these criteria, the most appropriate silvicultural treatment in pure spruce stands appears to be the two-phase edge shelterwood cutting. On the other hand, intensive single tree selection is maybe unexpectedly the least appropriate option. The other tested systems - single-phase edge, group, progressive group shelterwood cutting and moderate single tree selection have an equivalent, intermediate position.

Keywords: Norway spruce; genetic variation; spatial genetic structure; fertility variation; natural and artificial regeneration

Keywords: smrek obyčajný; genetická variabilita; priestorová genetická štruktúra; variabilita plodnosti; prirodzená a umelá obnova lesa

  • Brunel D., Rodolphe F., 1985: Genetic neighbourhood structure in a population of Picea abies L. Theoretical and Applied Genetics 71: 101-110.

  • Degen B., Gregorius H.R., Scholz F., 1996: ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genetica, 45: 323-329.

  • Degen B., 1997: Manual for Eco-Gene light (Version 1.0). Dostupné na internete: http://kourou.cirad.fr/genetique/

  • Degen B., Petit R., Kremer A., 2001: SGS-Spatial genetic sortware: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity, 92: 447-449.

  • Dovčiak M., Hrivnák R., Ujházy K., Gömöry D., 2008: Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecology, 194: 135-148. [Web of Science]

  • Epperson BK., 1992: Spatial structure of genetic variation within populations of forest trees. New Forests, 6: 257-278.

  • Finkeldey R., Ziehe M., 2004: Genetic implications of silvicultural regimes. Forest Ecology and Management, 197: 231-244

  • Gömöry D., 1992: Effect of stand origin on the genetic diversity of norway spruce (Picea-abies Karst.) populations. Forest ecology and management, 54(1-4): 215-223. [CrossRef]

  • Gömöry D., 1995: Simulation of the genetic structure and reproduction in plant populations: short note. Forest Genetics, 2(1): 59-63.

  • Gömöry D., Paule L., 2004: Management implications of intrapopulation and nterpopulation genetic variation in Norway spruce. In: J. Novotný (ed.): Close to Nature Forestry. Zvolen : Forestry Research Institute Zvolen, p. 129-137.

  • Gregorius H.R., 1991: On the concept of effective number. Theoretical Population Biology, 40: 269-283. [PubMed] [CrossRef]

  • Hardy O., Vekemans X., 1999: Isolation by distance in a continuous population, reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 83:145-154.

  • Jankovič J., 1996: Možnosti zvýšenia podielu prirodzenej obnovy lesa na príklade LHC Oravská Polhora. Vedecké práce Lesníckeho výskumného ústavu vo Zvolene, Zvolen : LVÚ Zvolen, s. 153-164.

  • Konnert M., 1991: Die Fichte (Picea abies [L.] Karst.) im Schwarzwald: Genetische Variation und Korrelationen. Fostw. Cbl., 110: 84-94.

  • Krajmerová D., Longauer R., 2000: Genetická diverzita smreka obyčajného (Picea abies Karst.) na Slovensku. Lesn. Čas. - Forestry Journal, 46(3): 273-286.

  • Kramer K., 2004: Effects of silvicultural regimes on dynamics of genetic and ecological diversity of European beech forests. Final Report of 5th framework project DynaBeech, QLK5-CT-1999-1210, 109 s.

  • Lagercranz U., Ryman N., 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Nature, 44(1): 38-53.

  • Lindgren D., Gea L., D., Jefferson P., A., 1996: Loss of genetics diversity monitored by status number. Silvae Genetica, 45: 52-59.

  • Longauer R., Gömöry D., Paule L. et al., 2001: Selection effects of air pollution on gene pools of Norway spruce, European silver fir and European beech. Environmental Pollution, 115: 405-411.

  • Mitton J.B., 1983: Conifers. In: S.D. Tanksley, T.J. Orton (eds.): Isozymes in Plant Genetics and Breeding. Part B. Elsevier Science Publishers, Amsterdam, 443-472.

  • Monserud A., 1975: Trials with program FOREST: Growth and reproduction simulation for mixed species even- or uneven- aged forest stands. In: Fries J. (ed.): Growth models for tree and stand simulation. Royal College of Forestry, Research Notes, 30: 56-73.

  • Müller-Starck G., Hussendörfer E., 1995: Conservation of genetic resources of Norway spruce (Picea abies Karst.) in Switzerland. Euforgen, IPGRI, 41-43.

  • Nei M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583-590.

  • Rajora O.P., 1999: Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theor. Appl. Genet., 99: 954-961.

  • Sebenn A.M., Degen B., Azevedo V.C.R. et al., 2008: Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. Forest ecology and management, 254(2): 335-349. [Web of Science]

  • Sokal R.R., Oden N.L., 1981: Spatial autocorrelation in biology. 1. Methodology. Biological Journal of the Linnean Society, 10: 199-228.

  • Sokal, R., Rohlf, J.,F., 1981: Biometry. WH Freeman & Co, New York - San Francisco, 859 s.

  • Yazdani R., Lindgren D., 1991: The impact o f selfpollination on production of sound selfed seeds. In: S. Fineschi, M.E. Malvolti, F. Cannata, H.H. Hattemer (eds.): The Population Genetics of Forest Trees, SPB Academic Publishing, the Hague, p. 143-147.

Comments (0)

Please log in or register to comment.