Jump to ContentJump to Main Navigation

Forum Mathematicum

Managing Editor: Brüdern, Jörg

Editorial Board Member: Bruinier, Jan Hendrik / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Gallavotti, Giovanni / Garnier, Josselin / Neeb, Karl-Hermann / Noguchi, Junjiro / Ranicki, Andrew / Segal, Dan / Shahidi, Freydoon / Shigekawa, Ichiro / Sogge, Christopher D. / Strambach, Karl

6 Issues per year

IMPACT FACTOR increased in 2014: 0.962
Rank 59 out of 310 in category Mathematics and 92 out of 255 in Applied Mathematics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.139
Source Normalized Impact per Paper (SNIP) 2014: 1.162
Impact per Publication (IPP) 2014: 0.691

Mathematical Citation Quotient (MCQ) 2014: 0.61



On differentiability of quermassintegrals

María A. Hernández Cifre1 / Eugenia Saorín2

1Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain.

2Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain.

Citation Information: Forum Mathematicum. Volume 22, Issue 1, Pages 115–126, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: 10.1515/forum.2010.006, October 2009

Publication History

Published Online:


In this paper we study the problem of classifying the convex bodies in , depending on the differentiability of their associated quermassintegrals with respect to the one-parameter-depending family given by the inner and outer parallel bodies. This problem was originally posed by Hadwiger in the 3-dimensional space. We characterize one of the non-trivial classes and give necessary conditions for a convex body to belong to the others. We also consider particular families of convex bodies, e.g. polytopes and tangential bodies.

Comments (0)

Please log in or register to comment.