Jump to ContentJump to Main Navigation


International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Berry, Richard / Burgert, Ingo / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gellerstedt, Göran / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Heitner, Cyril / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Kleen, Marjatta / Koch, Gerald / Lachenal, Dominique / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Pizzi, Antonio / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Tamminen, Tarja / Viikari, Liisa / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

9 Issues per year

IMPACT FACTOR 2013: 2.339
Rank 2 out of 21 in category Materials Science, Paper & Wood and rank 8 out of 64 in category Forestry and in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.880
Source Normalized Impact per Paper (SNIP): 1.136



Studies on fluorescence of cellulosics

Alain Castellan1 / Reinaldo Ruggiero2 / Elisabete Frollini3 / Ludmila A. Ramos4 / Christine Chirat5

1Université Bordeaux 1, US2B, UMR 5103 CNRS-INRA-UBx, Talence, France

2Universidade Federal de Uberlândia, Instituto de Química, Uberlândia, MG, Brazil

3Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil

4Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil

5Ecole Française de Papeterie et des Industries Graphiques, Saint Martin d'Hères, France

Corresponding author. Université Bordeaux 1, US2B, UMR 5103 CNRS-INRA-UBx, F-33405 Talence, France Phone: +33-5-40006280, Fax: +33-5-40006439,

Citation Information: Holzforschung. Volume 61, Issue 5, Pages 504–508, ISSN (Online) 1437434X, ISSN (Print) 00183830, DOI: 10.1515/HF.2007.090, August 2007

Publication History

Published Online:


Steady-state fluorescence emission spectra of various celluloses were measured at an excitation wavelength of 320 nm. Various spectra recorded in the solid state were compared: (1) ECF bleached papers made of hardwood, the anhydroglucose units of which were chemically modified at C1 and C6 or C2 and C3 positions with carboxylic groups; (2) microcrystalline cellulose; (3) cotton linters; and (4) delignified sisal fibers (mercerized or not). Fluorescence emission was quite independent of the carboxylic acid content and average molecular weight (determined by viscosimetry) of the cellulose polymers. Microcrystalline cellulose (Avicel), cotton linters, and mercerized delignified sisal cellulose were acetylated in homogeneous medium (DMAc/LiCl as solvent system) to obtain soluble polymers in dichloromethane for comparison of spectra recorded in the solid and liquid states. Fluorescence of cellulose acetates in solution (CH2Cl2) and in the solid state was compared under similar experimental conditions to non-esterified celluloses in the solid state. The importance of the solid state for fluorescence emission could be demonstrated. Fluorophores are present in minute amounts in the polymer and their favorable energy transfer for excitation in the solid state likely enhances fluorescence emission. Among numerous fluorophores, dityrosine appeared to be a good candidate for fluorescence because it displayed emission in the fluorescence range of cellulose. Dityrosine is an amino acid involved in the lignification of non-woody plants. Mercerized sisal impregnated with tyrosine in the presence of peroxidase and hydrogen peroxide did not show enhanced emission, in contrast to para-hydroxycinnamic acid (coumaric acid), which is also involved in the lignification process at least for non-woody plants. The origin of cellulose fluorescence remains uncertain and appears to have several origins. This study clearly underlines the importance of the solid state for enhancing fluorophore emission.

Keywords: acetylation; cellulose; cinnamic acids; cotton linters; fluorescence; microcrystalline cellulose; sisal

Comments (0)

Please log in or register to comment.