Jump to ContentJump to Main Navigation


International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Berry, Richard / Burgert, Ingo / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gellerstedt, Göran / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Heitner, Cyril / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Kleen, Marjatta / Koch, Gerald / Lachenal, Dominique / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Pizzi, Antonio / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Tamminen, Tarja / Viikari, Liisa / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

8 Issues per year

IMPACT FACTOR 2013: 2.339
Rank 8 out of 64 in category Forestry and 2 out of 21 in category Materials Science, Paper & Wood in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.880
Source Normalized Impact per Paper (SNIP): 1.136



Characterizing macro-voids of uncompressed mats and finished particleboard panels using response surface methodology and X-ray CT

Emmanuel K. Sackey1 / Gregory D. Smith1

1Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada

Corresponding author. Department of Wood Science, The University of British Columbia, 2935-2424 Main Mall, Vancouver, BC, Canada V6T 1Z4

Citation Information: Holzforschung. Volume 64, Issue 3, Pages 343–352, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: 10.1515/hf.2010.052, February 2010

Publication History

Published Online:


Macro-voids in the core of uncompressed particle mats and pressed particleboard manufactured from novel particleboard furnishes were characterized using a response surface method with mixture design and X-ray CT technology. Industrial particles were screened into core-fine, medium, and coarse size classes and their dimensions were measured. Wooden blocks measuring 10 times the mean dimensions of these particles were cut and used as surrogates for the industrial particles. Novel particle mixtures were prepared by mixing together various proportions from each particle size class. The mixtures were packed to simulate particleboard mat formation and a pre-pressed particle mat. Panels were then fabricated from the industrial furnish mixtures. The void fraction of the packed particles and the finished panels were measured and correlated with the IB strength and edge screw withdrawal resistance. Results indicated that densely packed hammer-milled industrial particles had a maximum void fraction of 63.2%. The void fraction of a randomly packed, dense particle mat was described using a full cubic model. In both particle mats without resin and the pressed panels, increasing the core-fine content decreased void volume, whereas increasing coarse particle fraction increased void volume in the mat only. The macro-void ratio in the pressed panels increased exponentially with void fraction for the randomly packed, loose particle mats. Particle mixtures that resulted in boards with the smallest void fraction were not necessarily the strongest boards; low density particleboard panels made from the novel 100% coarse mixture were found to have the highest mechanical properties.

Keywords: macro-voids; mixture design; packing density; packing efficiency; particleboard; particle mixture; particles; particle packing; porosity; response surface methodology; X-ray CT

Comments (0)

Please log in or register to comment.
Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.