Jump to ContentJump to Main Navigation

Human Movement

The Journal of University School of Physical Education, Wroclaw; University School of Physical Education, Krakow

4 Issues per year


SCImago Journal Rank (SJR): 0.138
Source Normalized Impact per Paper (SNIP): 0.564

Open Access
VolumeIssuePage

Open Access

Maltodextrin's Effect on the Performance of Elite Mountain Biking Athletes During Simulated Competition and on Power Output at the Ventilatory Threshold

Carlos Malfatti1, / Erivelton de Laat1, / Larissa Soler1 / Irene Bronkhorst1 / Carla Pacheco1 / Eduardo Funez1 / João Pavlak1, / Luiz da Silva1, / Raul Osiecki1,

State University of Center-West (UNICENTRO), Irati, Brazil1

Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil2

Federal University of Paraná (UFPR), ,Curitiba, Brazil3

Federal University of Santa Maria (UFSM), Santa Maria, Brazil4

This content is open access.

Citation Information: Human Movement. Volume 12, Issue 3, Pages 232–236, ISSN (Online) 1899-1955, ISSN (Print) 1732-3991, DOI: 10.2478/v10038-011-0023-9, September 2011

Publication History

Published Online:
2011-09-22

Maltodextrin's Effect on the Performance of Elite Mountain Biking Athletes During Simulated Competition and on Power Output at the Ventilatory Threshold

Purpose. To aim of this study was to analyze the effects of maltodextrin supplementation on cardiovascular and performance parameters during simulated Mountain Biking (MTB) competition as well as the cardiorespiratory and blood glucose (BG) response to a maximal test performed in a laboratory on elite MTB athletes. Methods. A total of eight male bikers [age: 28.4 ± 10.6 years; body fat: 9.46 ± 3.76 %; VO2max: 55.31 ± 4.7 mL/kg/min], participated in a double-blind study. The athletes received maltodextrin supplementation (1g/kg) or a placebo (light tangerine juice) 20 min before competition (seven 2 km laps) or before a laboratory maximal test. An incremental exercise test on a cycloergometer was performed to find any alterations in maximal HR, Watts max, VO2max, VEmax, and VO2 at the ventilatory threshold (VT), using a gas exchange analyzer. Comparisons between the simulated competition and laboratory variables (maltodextrin vs. placebo) were made using ANOVA and a two-tailed paired Student's t-test, where p < 0.05 was considered statistically significant. Results. Maltodextrin supplementation reduced 26 s in the mean time spent on completing all laps (Maltodextrin: 9 min and 16 s vs. placebo: 9 min and 35 s; p < 0.05). In laboratory testing, maltodextrin raised BG during exercise (Maltodextrin: 104.1 ± 20.9 mg/dL vs. placebo: 88.2 ± 5.3 mg/dL; p < 0.05), power output at the ventilatory threshold (Maltodextrin: 260.8 ± 12.9 vs. placebo: 150.5 ± 8.7; p < 0.05) but had no effect on cardiorespiratory variables. Conclusion. Maltodextrin was found to enhance athletic performance during MTB competition, showing that it can play an important role in supplementation strategies for these competitors.

Keywords: supplementation; maltodextrin; cyclist; performance

  • Impellizzeri F. M., Sassi A., Rodriguez-Alonso M., Mognoni P., Marcora S. M., Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc, 2002, 34 (11), 1808-1813, doi: 10.1249/01.MSS.0000036690.39627.F7. [CrossRef] [PubMed]

  • Impellizzeri F. M., Marcora S. M., The physiology of mountain biking. Sports Med, 2007, 37 (1), 59-71. [CrossRef] [Web of Science] [PubMed]

  • Ivy J. L., Costill D. L., Fink W. J., Lower R. W., Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports, 1979, 11 (1), 6-11. [PubMed]

  • Neufer, P. D., Costill D. L., Flynn M. G., Kirwan J. P., Mitchell J. B., Houmard J., Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol, 1987, 62 (3), 983-988. [PubMed]

  • Wright D. A., Sherman W. M., Dernbach A. R., Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol, 1991, 71 (3), 1082-1088. [PubMed]

  • Fielding R. A., Costill D. L., Fink W. J., King D. S., Hargreaves M., Kovaleski J. E., Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc, 1985, 17 (4), 472-476. [CrossRef] [PubMed]

  • Yaspelkis B. B., Patterson J. G., Anderla P. A., Ding Z., Ivy J. L., Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise. J Appl Physiol, 1993, 75, 1477-1485

  • Ruffo A. M., Osiecki R., Fernandes L. C., Felipe C. S., Osiecki A. C., Malfatti C. R. M., Moderate to high dose of maltodextrin before exercise improves glycogen availability in soleus and liver after prolonged swimming in rats. JEPonline, 2009, 12 (4), 30-38.

  • Coyle E. F., Coggan A. R., Hemmert M. K., Ivy J. L., Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol, 1986, 61 (1), 165-172. [PubMed]

  • Jeukendrup A. E., Jentjens R., Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med, 2000, 29 (6), 407-424. [CrossRef] [PubMed]

  • Hargreaves M., Briggs C. A., Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol, 1988, 65, 1553-1555.

  • Hawley A. J., Hopkins W. G., Aerobic glycolytic and aerobic lipolytic power systems: a new paradigm with implications for endurance and ultraendurance events. Sports Med, 1995, 19 (4), 240-250. [PubMed] [CrossRef]

  • Coyle E. F., Carbohydrate Supplementation during exercise. J Nutr, 1992, 122 (3), 788-795. [PubMed]

  • Siri W. E., Body composition from fluid spaces and density: analysis of methods. In: Brožek J., Henschel A. (eds.), Techniques for measuring body composition. Conference on Techniques for Measuring Body Composition, Natick, Massachusetts, January 22-23, 1959. National Academy of Sciences, Washington D. C., 1961.

  • Jackson A. S., Pollock M. L., Generalized equations for predicting body density of men. Br J Nutr, 1978, 40, 497-504.

  • Day J. R., Rossiter H. B., Coats E. M., Skasick A., Whipp B. J., The maximally attainable VO2 during exercise in humans: the peak versus maximum issue. J App Physiol, 2003, 95 (5), 1901-1907, doi: 10. 1152/japplphysiol.00024. 2003. [CrossRef]

  • Orr G. W., Green H. J., Hughson R. L., Bennett H. G., A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol, 1982, 52 (5), 1349-1352.

  • Carpes F. P., Mota C. B., Faria I. E., Heart rate response during a mountain-bike event: a case report. JEPonline, 2007, 10 (1), 12-20.

  • Palmer G. S., Hawley J. A., Dennis S. C., Noakes T. D., Heart rate responses during a 4-d cycle stage race. Med Sci Sports Exerc, 1994, 26 (10), 1278-1283. [PubMed]

  • Lucía A., Pardo J., Durántez A., Hoyos J., Chicharro J. L., Physiological differences between professional and elite road cyclists. Int J Sports Med, 1998, 19 (5), 342-348, doi: 10.1055/s-2007-971928. [PubMed] [CrossRef]

  • Lucía A., Hoyos J., Carvajal A., Chicharro J. L., Heart rate response to professional road cycling: the Tour de France. Int J Sports Med, 1999, 20 (3), 167-172, doi: 10.1055/s-1999-970284. [CrossRef]

  • Lucía A., Hoyos J., Pérez M., Chicharro J. L., Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc, 2000, 32 (10), 1777-1782. [Web of Science] [PubMed]

  • Fernández-García B., Pérez-Landaluce J., Rodríguez-Alonso M., Terrados N., Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc, 1999, 31 (5), 1002-1006.

  • Padilla S., Mujika I., Cuesta G., Goiriena J. J., Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc, 1999, 31 (6), 878-885. [CrossRef] [PubMed]

  • Padilla S., Mujika I., Orbañanos J., Angulo F., Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc, 2000, 32 (8), 850-856. [CrossRef] [PubMed]

  • Anastasiou C. A., Kavouras S. A., Koutsari C., Georgakakis C., Skenderi K., Beer M. et al., Effect of maltose-containing sports drinks on exercise performace. Int J Sport Nutr Exerc Metab, 2004, 14 (6), 609-625.

  • Bagby G. J., Green H. J., Katsuta S., Gollnick P. D., Glycogen depletion in exercising rats infused with glucose, lactate, or pyruvate. J Appl Physiol, 1978, 45 (3), 425-429.

  • Bergström J, Hultman E., A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest, 1967, 19 (3), 218-228. [PubMed] [CrossRef]

  • Flynn M. G., Costill D. L., Hawley J. A., Fink W. J., Neufer P. D., Fielding R. A. et al., Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc, 1987, 19 (1), 37-40. [PubMed]

  • El-Sayed M. S., MacLaren D., Rattu A. J., Exogenous carbohydrate utilisation: effects on metabolism and exercise performance. Comp Biochem Physiol, 1997, 118 (3), 789-803, doi: 10.1016/S0300-9629(97)00064-9. [CrossRef]

  • Leese G. P., Bowtell J., Mudambo S., Reynolds N., Thompson J., Scrimgeour C. M. et al., Post-exercise gastric emptying of carbohydrate solutions determined using the 13C acetate breath test. Eur J Appl Pphysiol 1995, 71 (4), 306-310, doi: 10.1007/BF00240409. [CrossRef]

Comments (0)

Please log in or register to comment.