Jump to ContentJump to Main Navigation

The International Journal of Biostatistics

Ed. by Hubbard, Alan E. / van der Laan, Mark J.

2 Issues per year

Increased IMPACT FACTOR 2012: 1.356
Mathematical Citation Quotient 2012: 0.10

Free Access

Simple Optimal Weighting of Cases and Controls in Case-Control Studies

Sherri Rose1 / Mark J. van der Laan2

1University of California, Berkeley

2University of California, Berkeley

Citation Information: The International Journal of Biostatistics. Volume 4, Issue 1, ISSN (Online) 1557-4679, DOI: 10.2202/1557-4679.1115, September 2008

Publication History:
Published Online:
2008-09-29

Researchers of uncommon diseases are often interested in assessing potential risk factors. Given the low incidence of disease, these studies are frequently case-control in design. Such a design allows a sufficient number of cases to be obtained without extensive sampling and can increase efficiency; however, these case-control samples are then biased since the proportion of cases in the sample is not the same as the population of interest. Methods for analyzing case-control studies have focused on utilizing logistic regression models that provide conditional and not causal estimates of the odds ratio. This article will demonstrate the use of the prevalence probability and case-control weighted targeted maximum likelihood estimation (MLE), as described by van der Laan (2008), in order to obtain causal estimates of the parameters of interest (risk difference, relative risk, and odds ratio). It is meant to be used as a guide for researchers, with step-by-step directions to implement this methodology. We will also present simulation studies that show the improved efficiency of the case-control weighted targeted MLE compared to other techniques.

Keywords: case control sampling; causal effect; counterfactual; double robust estimation; estimating function; inverse probability of treatment weighting; locally efficient estimation; marginal structural models; targeted maximum likelihood estimation

Comments (0)

Please log in or register to comment.