A Study of the Heating Section of a Gas Heated Steam Reformer : International Journal of Chemical Reactor Engineering

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR increased in 2014: 0.592
5-year IMPACT FACTOR: 0.678

SCImago Journal Rank (SJR) 2014: 0.257
Source Normalized Impact per Paper (SNIP) 2014: 0.358
Impact per Publication (IPP) 2014: 0.484


30,00 € / $42.00 / £23.00

Get Access to Full Text

A Study of the Heating Section of a Gas Heated Steam Reformer

Margrete H. Wesenberg1 / Jochen Ströhle2 / Hallvard F Svendsen3


2SINTEF Energy Research,

3NTNU, The Norwegian University of Science and Technology,

Citation Information: International Journal of Chemical Reactor Engineering. Volume 5, Issue 1, ISSN (Online) 1542-6580, DOI: 10.2202/1542-6580.1348, February 2007

Publication History

Published Online:

A gas heated steam reformer (GHR) which converts natural gas to synthesis gas for methanol or Fischer-Tropsch purposes has been modelled for steady state conditions. The model is in two dimensions and is made up of a fixed bed reactor model, representing one of the reactor tubes in the GHR, and an annulus model, representing the annular space on the shell side of the GHR where hot, fully converted syngas emits heat to the reactor tube. The annulus model is described and evaluated in this article. This is a plug flow model which involves heat transfer in radial direction caused by radiation and by turbulence. The gas radiation is modelled by the use of the discrete ordinates method and the effect on heat transfer from turbulence is modelled as an effective radial thermal conductivity. Both heat transfer mechanisms vary with the radial position. An additional annulus model, made in the commercial CFD code FLUENT and based on the k-? turbulence model and the discrete ordinates radiation model, is used to estimate effective radial thermal conductivities. These were implemented in the annulus model of the GHR model. The reactor and the annulus models were combined and linked by the wall temperature profile and the heat flux profile on the outer reactor tube wall. The simulation results were used to study the heat flux and temperature profiles along the reactor length and the radial temperature profiles in the annulus.

Keywords: finite difference method; two-dimensional; discrete ordinates method; convective steam methane reformer

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Shamkhali, M. R. Omidkhah, J. Towfighi, and M. R. Jafari Nasr
Petroleum Science and Technology, 2012, Volume 30, Number 6, Page 594

Comments (0)

Please log in or register to comment.