Jump to ContentJump to Main Navigation
Show Summary Details

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR increased in 2015: 0.759

SCImago Journal Rank (SJR) 2015: 0.276
Source Normalized Impact per Paper (SNIP) 2015: 0.473
Impact per Publication (IPP) 2015: 0.636

99,00 € / $149.00 / £75.00*

See all formats and pricing


Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

Catalytic Activity of Sulfated Iron-Tin Mixed Oxide for Esterification of Free Fatty Acids in Crude Palm Oil: Effects of Iron Precursor, Calcination Temperature and Sulfate Concentration

Kamchai Nuithitikul1 / Worawoot Prasitturattanachai2 / Jumras Limtrakul3

1King Mongkut's University of Technology North Bangkok,

2King Mongkut's University of Technology North Bangkok,

3Kasetsart University,

Citation Information: International Journal of Chemical Reactor Engineering. Volume 9, Issue 1, ISSN (Online) 1542-6580, DOI: 10.2202/1542-6580.2763, October 2011

Publication History

Published Online:

The activities of sulfated iron-tin mixed oxide catalysts for esterification of free fatty acids in crude palm oil were investigated. The iron-tin mixed oxides were prepared from co-precipitation method when the iron content was fixed at 10 mol%. Types of iron precursor, sulfate concentration and calcination temperature were varied. The optimum study in the esterification reaction variables (stirring speed, reaction time, catalyst loading, methanol/oil molar ratio and reaction temperature) was also conducted with the best sulfated iron-tin mixed oxide catalyst. The findings show that iron sulfate is the best precursor. The activities of sulfated iron-tin mixed oxide catalysts increase with sulfate concentration. The optimum calcination temperature to prepare sulfated iron-tin mixed oxides is 450°C. The addition of iron oxide into sulfated tin oxide improves the stability of the catalyst during the reusability process. Therefore, sulfated iron-tin mixed oxide is a better candidate than sulfated tin oxide for esterification of free fatty acids. For the esterification study, the optimum reaction conditions are: the stirring speed of 250 rpm, the catalyst loading of 4.5 wt% of the oil, the methanol/oil molar ratio of 14.2, the reaction temperature of 80°C and the reaction time of 3 h.

Keywords: biodiesel; sulfated tin oxide; iron oxide; free fatty acid

Comments (0)

Please log in or register to comment.