Parameter identification for Laplace equation and approximation in Hardy classes : Journal of Inverse and Ill-posed Problems jiip

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR increased in 2014: 0.880
Rank 74 out of 310 in category Mathematics and 113 out of 255 in Applied Mathematics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.516
Source Normalized Impact per Paper (SNIP) 2014: 1.430
Impact per Publication (IPP) 2014: 0.613

Mathematical Citation Quotient (MCQ) 2014: 0.51

VolumeIssuePage

Issues

Parameter identification for Laplace equation and approximation in Hardy classes

S. Chaabane / M. Jaoua / J. Leblond

ENIT-LAMSIN, & Faculté des Sciences de Sfax, 3038, Sfax, Tunisie. E-mail:

ENIT-LAMSIN, BP 37, 1002 Tunis-Bélvédère. E-mail:

INRIA Sophia-Antipolis - B.P. 93-06902, Sophia Antipolis Cedex, France. E-mail:

Citation Information: Journal of Inverse and Ill-posed Problems jiip. Volume 11, Issue 1, Pages 33–57, ISSN (Online) 1569-3953, ISSN (Print) 0928-0219, DOI: 10.1515/156939403322004928,

Publication History

Published Online:

We consider the inverse problem of identifying a Robin coefficient on some part of the boundary of a smooth 2D domain from overdetermined data available on the other part of the boundary, for Laplace equation in the domain. Using tools from complex analysis and analytic functions theory, we provide a constructive and convergent identification scheme for this inverse problem, together with numerical experiments.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Slim Chaabane and Imed Feki
Czechoslovak Mathematical Journal, 2014, Volume 64, Number 2, Page 351
[2]
A. Habbal and M. Kallel
SIAM Journal on Control and Optimization, 2013, Volume 51, Number 5, Page 4066
[3]
Imed Feki
Czechoslovak Mathematical Journal, 2013, Volume 63, Number 2, Page 481
[4]
I. Feki, H. Nfata, and F. Wielonsky
Journal of Mathematical Analysis and Applications, 2012, Volume 395, Number 1, Page 366
[5]
S Chaabane, I Feki, and N Mars
Inverse Problems, 2012, Volume 28, Number 6, Page 065016
[6]
S. Chaabane, J. Ferchichi, and K. Kunisch
Comptes Rendus Mathematique, 2003, Volume 337, Number 12, Page 771
[7]
P. Kügler and E. Sincich
Journal of Mathematical Analysis and Applications, 2009, Volume 359, Number 2, Page 451
[8]
Hui Cao, Sergei V Pereverzev, and Eva Sincich
Journal of Physics: Conference Series, 2008, Volume 135, Page 012027
[9]
E. Sincich
Journal of Inverse and Ill-posed Problems, 2009, Volume 17, Number 8
[10]
Eva Sincich
SIAM Journal on Mathematical Analysis, 2010, Volume 42, Number 6, Page 2922

Comments (0)

Please log in or register to comment.