Jump to ContentJump to Main Navigation

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.

6 Issues per year


Increased IMPACT FACTOR 2013: 0.593
Rank 143 out of 299 in category Mathematics in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.466
Source Normalized Impact per Paper (SNIP): 1.251

Mathematical Citation Quotient 2013: 0.51

VolumeIssuePage

Issues

A global stability estimate for the Gel'fand–Calderón inverse problem in two dimensions

1Centre de Mathématiques Appliquées, École Polytechnique, 91128, Palaiseau, France.

Citation Information: Journal of Inverse and Ill-posed Problems. Volume 18, Issue 7, Pages 765–785, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: 10.1515/jiip.2011.003, February 2011

Publication History

Received:
2010-09-25
Published Online:
2011-02-24

Abstract

We prove a global logarithmic stability estimate for the Gel'fand–Calderón inverse problem on a two-dimensional domain.

Keywords.: Gel'fand–Calderón inverse problem; global stability in 2D

Comments (0)

Please log in or register to comment.
Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.