Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error : Journal of Numerical Mathematics Jump to ContentJump to Main Navigation
Show Summary Details

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board Member: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold


IMPACT FACTOR 2015: 0.552
5-year IMPACT FACTOR: 2.203

SCImago Journal Rank (SJR) 2015: 2.152
Source Normalized Impact per Paper (SNIP) 2015: 3.045
Impact per Publication (IPP) 2015: 3.022

Mathematical Citation Quotient (MCQ) 2015: 1.17

149,00 € / $224.00 / £112.00*

Online
ISSN
1569-3953
See all formats and pricing
Select Volume and Issue
Loading journal volume and issue information...

Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error

R. Rannacher / A. Westenberger / W. Wollner

1*Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 293/294, D-69120 Heidelberg, Germany

Citation Information: Journal of Numerical Mathematics. Volume 18, Issue 4, Pages 303–327, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: 10.1515/jnum.2010.015, December 2010

Publication History

Received:
2010-10-08
Published Online:
2010-12-20

Abstract

This paper develops a combined a posteriori analysis for the discretization and iteration errors in the solution of elliptic eigenvalue problems by the finite element method. The emphasis is on the iterative solution of the discretized eigenvalue problem by a Krylov-space method. The underlying theoretical framework is that of the Dual Weighted Residual (DWR) method for goal-oriented error estimation. On the basis of computable a posteriori error estimates the algebraic iteration can be adjusted to the discretization within a successive mesh adaptation process. The functionality of the proposed method is demonstrated by numerical examples.

Keywords:: eigenvalue problems; finite element method; mesh adaptation; DWR method; iteration error; stopping criteria

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Oscar P. Bruno, Timothy Elling, and Ayon Sen
Mathematical Problems in Engineering, 2015, Volume 2015, Page 1
[3]
Ch. Meyer, A. Rademacher, and W. Wollner
SIAM Journal on Scientific Computing, 2015, Volume 37, Number 2, Page A918
[4]
Valentine Rey, Pierre Gosselet, and Christian Rey
Computer Methods in Applied Mechanics and Engineering, 2015, Volume 287, Page 212
[5]
Vít Dolejší, Ivana Šebestová, and Martin Vohralík
Journal of Scientific Computing, 2015, Volume 64, Number 1, Page 1
[6]
J. Gedicke and C. Carstensen
Computer Methods in Applied Mechanics and Engineering, 2014, Volume 268, Page 160
[7]
Alexandre Ern and Martin Vohralík
SIAM Journal on Scientific Computing, 2013, Volume 35, Number 4, Page A1761
[8]
Rolf Rannacher
Discrete and Continuous Dynamical Systems - Series S, 2012, Volume 5, Number 6, Page 1147
[9]
D. Gerecht, R. Rannacher, and W. Wollner
Journal of Mathematical Fluid Mechanics, 2012, Volume 14, Number 4, Page 661

Comments (0)

Please log in or register to comment.