Jump to ContentJump to Main Navigation
Open Access

GPS Landslide Monitoring: Single Base vs. Network Solutions — A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network

Guoquan Wang1

Puerto Rico Seismic Network, Department of Geology, University of Puerto Rico, P.O. Box 9000, Mayaguez, PR 00681, U.S.1

This content is open access.

Citation Information: Journal of Geodetic Science. Volume 1, Issue 3, Pages 191–203, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: 10.2478/v10156-010-0022-3, June 2011

Publication History

Published Online:
2011-06-29

GPS Landslide Monitoring: Single Base vs. Network Solutions — A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network

This study demonstrated an approach to using permanent GPS stations from a local continuous GPS network as no-cost references in conducting long-term millimeter-level landslide monitoring. Accuracy and outliers from a series of single-base and network GPS measurements of a creeping landslide were studied. The criterion for accuracy was the weighted root-mean-square (RMS) of residuals of GPS measurements with respect to true landslide displacements over a period of 14 months. This investigation indicated that the current Puerto Rico and Virgin Islands GPS network, as a reference frame, can provide accuracy of 1 to 2 mm horizontally and 6 mm vertically for local 24-hour continuous landslide monitoring with few outliers (<1%). The accuracy degraded by a factor of two for 6-hour sessions, and more for shorter sessions. This study indicated that adding a few reference stations to GPS data processing can reduce the number of outliers and increase the accuracy and robustness of landslide surveying, even if these references are far from the study site. This improvement was particularly significant for short sessions and vertical components. The accuracy of network solutions depended slightly on the number of reference stations, but the dependence on the distance and geometric distribution of the references was weak. For long-term landslide monitoring, accuracy under 5 mm horizontally and 15 mm vertically are often expected. Accuracy at this level can be stably achieved in the Puerto Rico and Virgin Islands region by performing field observations for 4 hours or longer, and applying 3 or more reference stations for solving a network solution. This study also indicated that rainfall events can play a crucial rule in high-precision GPS measurements. GPS data collected during heavy rainfall events should be cautiously analyzed in landslide studies.

Keywords: GPS accuracy; landslide monitoring; Puerto Rico; single base; network; outlier; rainfall

  • Altamimi Z., Collilieux X., Legrand J., Garayt B., Boucher C., 2007, ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949. [CrossRef] [Web of Science]

  • Bevis M. M., Chiswell S., Businger S., 1995, GPS/STORM—GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478. [Web of Science]

  • Boehm J., Niell A., Tregoning P., Schuh H., 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geopgys. Res. Lett., 33, L07304, doi:10.1029/2005/GL025546. [CrossRef]

  • Brückl E., Brunner F. K., Kraus K., 2006, Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data, Engineering Geology, 88: 149-159. [CrossRef]

  • Brunner F., Welsch W. M., 1993, Effect of the troposphere on GPS measurements, GPS World, 4(1): 42-51.

  • Chen G., Herring T. A., 1997, Effects of atmospheric azimuthal asymmetry of the analysis of space geodetic data, J. Geophys. Res., 102: 20,489-20,502.

  • Coe J. A., Ellis W. L., Godt J. W., Savage W. Z., Savage J. E., Michael J. A., Kibler J. D., Powers P. S., Lidke D. J., Debray S., 2003, Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998-March 2002, Engineering Geology, 68: 67-101. [CrossRef]

  • Davis J. L., Elgered G., Niell A. E., Kuehn C. E., 1993, Ground-based measurement of gradients in the "wet" radio refractive index of air, Radio Sci., 28: 1003-1018. [CrossRef]

  • Dodson A. H., Shardlow P. J., Hubbard L. C. M., Elgered G., Jarlemark P. O. J., 1996, Wet tropospheric effects on precise relative GPS height determination, Journal of Geodesy, 70: 188-202. [CrossRef]

  • Dong D., Herring T. A., King R. W., 1998, Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geod., 72: 200-214.

  • Dow J. M., Neilan R. E., Rizos C., 2009, The international GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83: 191-198.

  • Eckl M. C., Snay R. A., Soler T., Cline M. W., Mader G. L., 2001, Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, J. Geod., 75: 633-640.

  • Firuzabadi D., King R. W., 2011, GPS precision as a function of session duration and reference frame using multi-point software, GPS Solutions (doi: 10.1007/s10291-011-0218-8). [Web of Science] [CrossRef]

  • Gili J. A., Corominas J., Rius J., 2000, Using Global Positioning System techniques in landslide monitoring, Engineering Geology, 55: 167-192. [CrossRef]

  • Gregorius T., Blewitt G., 1998, The effect of weather fronts on GPS measurements, GPS World, 1998-May, 52-60.

  • Herring T. A., King R. W., McCluskey S. M., 2009, Introduction to GAMIT/GLOBK, Release 10.35, mass. Instit. of Tech., Cambridge.

  • Iwabuchi T., Miyazaki S., Heki K., Naito I., Hatanaka Y., 2003, An Impact of estimating tropospheric delay gradients on tropospheric delay estimations in the summer using the Japanese nationwide GPS array, Journal of Geophysical Research, 108 (D10), 4315, doi:10.1029/2002JD002214. [CrossRef]

  • Janes H. W., Langley R. B., Newby S. P., 1989, A comparison of several models for the prediction of tropospheric propagation delay, Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mexico, March 13-17, vol. 1, 28-52.

  • Jibson R. W., 1986, Evaluation of landslide hazards resulting from the 5-8 October 1985 storm in Puerto Rico, Jibson R. W., 1989, Debris flows in southern Puerto Rico. Geol. Soc. Am., Special paper 236: 29-55.

  • Larson K. M, Small E. E., Gutmann E. D., Bilich A., Axelrad P., Braun J. J., 2008a, Using GPS multipath to measure soil moisture fluctuations: Initial results, GPS Solut., 12(3): 173-177, doi:10.1007/s10291-007-0076-6. [Web of Science] [CrossRef]

  • Larson K. M., Small E. E., Gutmann E. D., Bilich A. L., Braun J. J., Zavorotny V. U., 2008b, Use of GPS receivers as a soil moisture network for water cycle studies, Geophys. Res. Let., 35, L24405, doi:10.1029/2008GL036013. [CrossRef]

  • Larson K. M., Braun J. J., Small E. E., Zavorotny V. U., Gutmann E. D., Bilich A. L., 2010, GPS multipath and its relation to near-surface soil moisture content, IEEE J-STARS, 3: 91-99, doi: 10.1109/JSTARS.2009.2033612. [CrossRef]

  • MacMillan D. S., 1995, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Let., 22(9): 1041-1044.

  • Malet J. P., Maquaire O., Calais E., 2002, The use of Global Positioning System techniques for the continuous monitoring of landslides—application to the Super-Sauze earthflow (Alpesde Haute-Province, France), Geomorphology, 43: 33-54. [CrossRef]

  • Mie G., 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallšungen, Annals of Physics, Vol. 25: 377-445.

  • Mora P., Baldi P., Casula G., Fabris M., Ghirotti M., Mazzini E., Pesci A., 2003, Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca di Malta landslide (northern Apennines, Italy), Engineering Geology, 68: 103-121. [CrossRef]

  • Olsen R.L., Rogers D.V., Hodge D.B., 1978, The aRb relation in the calculation of rain attenuation, IEEE Trans. Ant. Prop., Vol. AP-26: 318-329. [CrossRef]

  • Peyret M., Djamour Y., Rizza M., Ritz J. F., Hurtrez J. E., Goudarzi M. A., Nankali H., Chery J., Le Dortz K., Uri F., 2008, Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry, Engineering Geology, 100: 131-141. [CrossRef] [Web of Science]

  • Psimoulis P., Ghilardi M., Fouache E., Stiros S., 2007, Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data, Engineering Geology, 90: 55-70. [Web of Science] [CrossRef]

  • Ray P. S., 1972, Broadband complex refractive indices of ice and water, Applied Optics, 11 (8): 1836-1844. [CrossRef] [PubMed]

  • Rocken C., Hove T. V., Johnson J., Solheim F., Ware R., 1995, GPS/STORM—GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478. [Web of Science] [CrossRef]

  • Saastamoinen J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, The use artificial satellites for geodesy. Edited by S. W. Henricksen, A. Mancini, B. H. Chovitz, Geophysical Monograph 15, American Geophysical Union, Washington D. C., pp. 247-251.

  • Sato H. P., Abe K., Ootaki O., 2003, GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan, Engineering Geology, 67: 379-390. [CrossRef]

  • Soler T., Michalak P., Weston N. D., Snay R. A., Foote R. H., 2006, Accuracy of OPUS solution for 1- to 4-h observing sessions, GPS Solution, 10: 45-55, doi:10.1007/s10291-005-00087-3.

  • Squarzoni C., Delacourt C., Allemand P., 2005, Differential single-frequency GPS monitoring of the La Valette landslide (French Apls), Engineering Geology, 79: 215-229. [CrossRef]

  • Tagliavini F., Mantovani M., Marcato G., Pasuto A., Silvano S., 2007, Validation of landslide hazard assessment by means of GPS monitoring technique— a case study in the Dolomites (Eastern Alps, Italy), Natural Hazards and Earth System Sciences, 7: 185-193. [Web of Science] [CrossRef]

  • Wang G., Phillips D., Joyce J., Rivera F. O., 2011, The Integration of TLS and Continuous GPS to Study Landslide Deformation: A Case Study in Puerto Rico, Journal of Geodetic Science, 1(1): 25-34, doi: 10.2478/v10156-010-0004-5. [CrossRef]

  • Wu S. C., 1979, Optimum frequencies of a passive microwave radiowave radiometer for tropospheric path-length correction, IEEE Transactions on antennas and propagation, 27(2): 233-239.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Timothy J. Kearns, Guoquan Wang, Yan Bao, Jiajun Jiang, and Dongje Lee
Journal of Surveying Engineering, 2015, Page 05015002
[2]
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2012, Volume 138, Number 3, Page 143
[3]
Guoquan Wang, Yan Bao, Yanet Cuddus, Xueyi Jia, John Serna, and Qi Jing
Natural Hazards, 2015, Volume 77, Number 3, Page 1939
[4]
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2015, Volume 141, Number 2, Page 05014004
[5]
Jiangbo Yu, Guoquan Wang, Timothy J. Kearns, and Linqiang Yang
International Journal of Geophysics, 2014, Volume 2014, Page 1
[6]
Guoquan Wang, Jiangbo Yu, Timothy J. Kearns, and Jesse Ortega
Journal of Surveying Engineering, 2014, Volume 140, Number 3, Page 05014001
[7]
Guoquan Wang, Timothy J. Kearns, Jiangbo Yu, and Gabriel Saenz
Landslides, 2014, Volume 11, Number 1, Page 119

Comments (0)

Please log in or register to comment.