Jump to ContentJump to Main Navigation
Open Access

Open Access

Interdecadal oscillations in Atmospheric Angular Momentum variations

R. Abarca-del-Rio1 / D. Gambis1 / D. Salstein1

Departamento de Geofísica (DGEO), Universidad de Concepción, C160, Concepción, Chile1

Observatoire de Paris/SYRTE/UMR 8630-CNRS, Paris, France2

Atmospheric and Environmental Research, Lexington, MA, USA3

This content is open access.

Citation Information: Journal of Geodetic Science. Volume 2, Issue 1, Pages 42–52, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: 10.2478/v10156-011-0025-8, January 2012

Publication History

Published Online:
2012-01-24

Interdecadal oscillations in Atmospheric Angular Momentum variations

Global Atmospheric Angular Momentum (AAM) is an intrinsic index for describing processes that affect the atmospheric circulation on time scales ranging from intraseasonal to secular. It is associated with length-of-day (LOD) variability through conservation of global angular momentum in planet Earth and thus is of considerable importance for quantifying how the Earth acts as a system. The availability of lengthy AAM time series computed from the recent 20th Century atmospheric reanalyses (1870-2008), complemented by the NCAR-NCEP reanalysis in the overlapping period of 1948-2008 allows the investigation of the role of decadal and interdecadal cycles as well as the recent overall trend in AAM. Thus, we extend to the entire 20th century (and prior, back to 1870) results concerning decadal time scales and a secular positive trend detected over recent decades by different authors. In addition, we also note that AAM has features of interdecadal time scales that modulate the lower frequency variability. These interdecadal time signals oscillate with periods of about 30-50 years, and we found an indication of an 80-90 year period. Short term signals interact with the long-term (secular) trend. Particularly over the years 1950-1985 the global positive trend in AAM appears to result from a conjunction of constructive positive slopes from all lower frequency signals (interdecadal short-term trends and the long-term positive secular trend). Since the mid 1980s, however, the interdecadal oscillation short-term trend contribution decreases, as does the total signal in global AAM. These oscillations appear as two interdecadal modes originating within the Pacific (associated principally with the Pacific Decadal Oscillation and also ENSO) from which they propagate poleward, with differing characteristics in each hemisphere.

Keywords: Length of day; global Atmospheric Angular Momentum; XX century atmospheric reanalyses; decadal and interdecadal variability; pacific decadal oscillation; ENSO

  • Abarca del Rio R., 1999, The influence of global warming in Earth rotation speed. Ann. Geophys. 17, pp. 806-811 [CrossRef]

  • Abarca del Rio R., Gambis D., Salstein D. A., 2000, Interannual signals in length of day and atmospheric angular momentum, Ann. Geophys., 18, pp. 347-364

  • Abarca del Rio, R., Gambis D., Salstein D. A., Nelson P., Dai A., 2003, Solar activity and earth rotation variability, Journal of Geodynamics. 36, pp. 423-443 [CrossRef]

  • Abarca-del-Rio R., Mestre O. 2006, Decadal to secular time scales variability in temperature measurements over France, Geophys. Res. Lett. 33, L13705 [CrossRef]

  • Abarca-del-Rio R., Salstein D. A., 2011, Atmospheric angular momentum from the 20th Century Reanalysis Project, Geophysical Research Abstracts. 13, EGU2011-13912

  • Andronova N. G., Schlesinger M. E., 2000, Causes of global temperature changes during the 19th and 20th centuries, Geophys. Res. Lett. 27, pp. 2137-2140 [CrossRef]

  • Aoyama Y., Naito I., 2000, Wind contributions to the Earth's angular momentum budgets in seasonal variation, J. Geophys. Res., 105, pp. 12417-12431 [CrossRef]

  • Bihrat O., Mehmet N., 2003, The Power of Statistical Tests for Trend Detection, Power. 27, pp. 247-251

  • Chen G., Shao B., Han Y., Ma J., Chapron B., 2010, Modality of semiannual to multidecadal oscillations in global sea surface temperature variability, J. Geophys. Res. 115, C03005 [CrossRef]

  • Compo G. P., Whitaker J. S., Sardeshmukh P. D., 2006, Feasibility of a 100-year reanalysis using only surface pressure data, Bull. Am. Meteorol. Soc. 87, pp. 175-190 [CrossRef]

  • Compo G. P., Sardeshmukh P. D., 2009, Oceanic influences on recent continental warming. Climate Dynamics, 32, pp. 333-342

  • Compo G. P. et al., 2011, The Twentieth Century Reanalysis Project. Quarterly J. Roy. Meteorol. Soc. 137, pp. 1-28

  • Craigmile P. F., Percival D. B., 2002, Wavelet-based trend detection and estimation, Encyclopedia of Environmetrics 4, pp. 2334-2338, edited by A. H. El-Shaarawi and W. W. Piegorsch (Hoboken, N. J., John Wiley)

  • de Viron, O., V. Dehant, H. Goosse, and M. Crucifix, 2001, Effect of Global warming on the length-of-day Geophysical Research Letters

  • de Viron O., Salstein D., Bizouard C., Fernandez L., 2004, Low-frequency excitation of length of day and polar motion by the atmosphere, J. Geophys. Res. 109, B03408 [CrossRef]

  • Dickey J., Marcus S., Hide R., 1992, Global propagation of interannual fluctuations in atmospheric angular momentum. Nature. 357, pp. 484-488

  • Dickey J. O., Marcus S. L. DeViron O., 2003, Coherent interannual and decadal variations in the atmosphere-ocean system, Geophysical Research Letters. 30(11), 1573 [CrossRef]

  • Egger J., Weickmann K., Hoinka K.-P. 2007, Angular momentum in the global atmospheric circulation, Rev. Geophys. 45, RG4007

  • Enfield D. B., Mestas-Nuñez A. M., 1999, Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns, J. Climate. 12, pp. 2719-2733 [CrossRef]

  • Eubanks T. M., 1993, Interactions between the atmosphere, ocean and crust, Possible oceanic signal in earth rotation, Advances in Space Research. 13(11), pp. 291-300

  • Flandrin P., Goncalves P., 2004, Empirical mode decompositions as a data-driven wavelet-like expansions, Int. J. Wavelets Multires. Inf. Process. 2(4), pp. 477-496

  • Gray S. T., Graumlich L. J., Betancourt J.L, Pederson G. T., 2004, A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A. D. Geophys. Res. Lett., 31, L12205 [CrossRef]

  • Grinsted A., Moore J., Jevrejeva S., 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics. 11, pp. 561-566 Sref-ID:1607-7946

  • Gross, R. S., Fukumori I., Menemenlis D. 2005, Atmospheric and oceanic excitation of decadal-scale Earth orientation variations, J. Geophys. Res. 110, B09405 [CrossRef]

  • Gross R. S., 2007, Earth rotation variations-long period, in Physical Geodesy, edited by T. A. Herring Treatise on Geophysics, 3, pp. 239-294 (Elsevier, Oxford)

  • Huang, H.-P., Weickmann K. M., Hsu C. J., 2001, Trend in Atmospheric Angular Momentum in a Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing, J. Climate, 14, pp. 1525-1534 [CrossRef]

  • Huang, N. D., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.-C, Tung C. C., Liu H. H., 1998, The empirical modal decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454, pp. 903-995

  • Huang, N. E., and Z. Wu, 2008, A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46, RG2006 [CrossRef]

  • Jadin E., 1995, Total ozone and stratospheric angular momentum anomalies Meteorology and Hydrology. 7, pp. 48-55

  • Jadin E. A., Kondratyev K.YA., Bekoryukov V. I., Vargin P. N., 2005, Influence of atmospheric circulation variations on the ozone layer, International Journal of Remote Sensing. 26(16), pp. 3467-3478

  • Kalnay E. et al., 1996, The NMC/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 77, pp. 437-471

  • Kistler R. at al., 2001, The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull. Amer. Meteor. Soc. 82, pp. 247-268 [CrossRef]

  • Knight, J. R.; Folland C. K.,. Scaife A.A, 2006, Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33: L17706 [CrossRef]

  • Lambeck K., Cazenave A, 1977, The Earth's variable rate of rotation: a discussion of some meteorological and oceanic causes and consequences, Phil. Trans. R. Soc. Lond., A284, pp. 495-506

  • Lee S., Son S. W., Grise K., Feldstein, S. B., 2008, A mechanism for the poleward propagation of zonal mean flow anomalies, Journal of Atmospheric Sciences. 64 (3), pp. 849-868

  • Libiseller C., Grimvall A., 2002, Performance of partial Mann-Kendall tests for trend detection in the presence of covariates, Environmetrics. 13 (1), pp. 71-84 [CrossRef]

  • Marshall J., Plumb R. A., 2007, Atmosphere, ocean and climate dynamics: an introductory text, International Geophysics, vol 93, Academic Press, p. 344

  • MacDonald G. M., Case R. A., 2005, Variations in the Pacific Decadal Oscillation over the past millennium, Geophys. Res. Lett., 32, L08703 [CrossRef]

  • Murguía J. S., Rosu H. C., 2011, Discrete Wavelet Analyses for Time Series, Discrete Wavelet Transforms - Theory and Application., Juuso T. Olkkonen (Ed.), ISBN: 978-953-307-185-5, InTech, Available from: http://www.intechopen.com/articles/show/title/discrete-wavelet-analyses-for-time-series

  • Li J., Xie S-P, Edward R. C., Gang H., D'Arrigo R., Liu F., Ma J., Zheng X-T., 2011, Interdecadal modulation of El Niño amplitude during the past millennium, Nature

  • Peixoto J. P., Oort A. H., 1992, Physics of Climate, American Institute of Physics, p. 520

  • Rosen, R. D., Salstein, D. A., 1983, Variations in atmospheric angular momentum on global and regional scales and the length of day, J. Geophys. Res. 88, pp. 5451-5470 [CrossRef]

  • Rosen, R. D., Salstein, D. A., 1985, Contribution of Stratospheric Winds to Annual and Semiannual Fluctuations in Atmospheric Angular Momentum and the Length of Day, J. Geophys. Res., 90(D5), pp. 8033-8041 [CrossRef]

  • Rosen R. D., Salstein D. A., 2000, Multidecadal signals in the interannual variability of atmospheric angular momentum, Clim. Dyn. 6, pp. 693-700

  • Salstein D. A., Quinn K., Abarca-del-Rio R., 2011, Impact of atmosphere/ocean models' climate scenarios on angular momentum and related EOP parameters, Geophysical Research Abstracts, 13, EGU2011-5270-1

  • Schlesinger M., Ramankutty N., 1994, An oscillation in the global climate system of 65-70 years, Nature, 367, pp. 723-726

  • Shabalova M. V., Weber S. L., 1999, Patterns of temperature variability on multidecadal to centennial timescales, J. Geophys. Res., 104, pp. 31023-31042 [CrossRef]

  • Torrence C., Compo G. P., 1998, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, pp. 61-78 [CrossRef]

  • Yang Z., Yang L., 2010, A new definition of the intrinsic mode function, Engineering and Technology. 60, pp. 822-825

  • Winkelnkemper T., Seitz F., Min S.-K., Hense A., 2008, Simulation of Historic and Future Atmospheric Angular Momentum Effects on Length-of-day Variations with GCMs, Sideris, ed. Observing our Changing Earth, 133, pp. 447-454

  • Wu Z., Huang N. E., Long S. R., Peng C-K., 2007, On the trend, detrending, and variability of nonlinear and nonstationary time series, Proc Natl Acad Sci. 104, pp. 14889-14894 [CrossRef]

  • Zhou Y. H., Chen J., Salstein D. A., 2008, Tropospheric and stratospheric wind contributions to Earth's variable rotation from NCEP/NCAR reanalyses (2000-2005), Geophysical Journal International. 174, pp. 453-463

Comments (0)

Please log in or register to comment.