Etracker Debug:
	et_pagename = "Journal of Medical Biochemistry|jomb|C|[EN]"
	
        
Jump to ContentJump to Main Navigation

Journal of Medical Biochemistry

The Journal of Society of Medical Biochemists of Serbia

4 Issues per year

IMPACT FACTOR 2013: 0.721

Open Access
VolumeIssuePage

Issues

Open Access

Molecular Genetic Markers as a Basis for Personalized Medicine / MOLEKULARNO-GENETIČKI MARKERI KAO OSNOV ZA PERSONALIZOVANU MEDICINU

1 / Branka Zukić1 / Maja Stojiljković Petrović1

1Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia

This content is open access.

Citation Information: Journal of Medical Biochemistry. Volume 33, Issue 1, Pages 8–21, ISSN (Online) 1452-8266, ISSN (Print) 1452-8258, DOI: 10.2478/jomb-2013-0035, October 2013

Publication History

Published Online:
2013-10-30

Summary

Nowadays, genetics and genomics are fully integrated into medical practice. Personalized medicine, also called genome-based medicine, uses the knowledge of the genetic basis of disease to individualize treatment for each patient. A number of genetic variants, molecular genetic markers, are already in use in medical practice for the diagnosis, prognosis and follow-up of diseases (monogenic hereditary disorders, fusion genes and rearrangements in pediatric and adult leukemia) and presymptomatic risk assessment (BRCA 1/2 for breast cancer). Additionally, the application of pharmacogenomics in clinical practice has significantly contributed to the individualization of therapy in accordance with the patient’s genotype and gene expression profile. Genetic testing for several pharmacogenomic markers (TPMT, UGT1A1, CYP2C9, VKORC1) is mandatory or recommended prior to the initiation of therapy. The most important achievement of genome-based medicine is molecular-targeted therapy, tailored to the genetic profile of a disease. Testing for gene variants in cancer (BCR-ABL, PML/RARa, RAS, BCL-2) is part of the recommended evaluation for different cancers, in order to achieve better management of the disease. The ultimate goal of medical science is to develop gene therapy which will fight or prevent a disease by targeting the disease causing genetic defect. Gene therapy technology is rapidly developing, and has already been used with success. Although medicine has always been essentially »personal« to each patient, personalized medicine today uses modern technology and knowledge in the field of molecular genetics and genomics, enabling a level of personalization which leads to significant improvement in health care.

Kratak sadržaj

Genetika i genomika su danas potpuno integrisane u medicinsku praksu. Personalizovana medicina, poznata i kao medicina zasnovana na genomu, koristi znanja o genetičkoj osnovi bolesti da bi se individualizovalo lečenje svakog pacijenta. Veliki broj genetičkih varijanti, molekularno-genetičkih markera, već se koristi u kliničkoj praksi za dijagnozu, prognozu i praćenje bolesti (monogenska nasledna oboljenja, fuzioni geni i rearanžmani u pedijatrijskim i adultnim leukemijama) i presimptomatsku procenu rizika od obolevanja (BRCA1/2 za kancer dojke). Osim toga, primena farmakogenomike u kliničkoj praksi značajno je doprinela individualizaciji terapije u skladu sa genotipom i profilom ekspresije gena pacijenta. Genetičko testiranje za nekoliko farmakogenomičkih markera (TPMT, UGT1A1, CYP2C9, VKORC1) obavezno je ili se prepo ručuje pre započinjanja terapije. Najvažniji doprinos medicine za snovane na genomu je ciljana molekularna terapija, prilagođ ena genetskom profilu bolesti. Testiranje genetičkih varijanti u malignim oboljenjima (BCR-ABL, PML/RARa, RAS, BCL-2, KIT, PDGFR, EGF) doprinosi tačnijoj stratifi kaciji različitih kancera i adekvatnom izboru terapije. Krajnji cilj medicinske nauke je da primeni gensku terapiju koja bi eliminisala uzrok bolesti ili prevenirala bolest, ciljajući genetički defekt koji leži u osnovi bolesti. Tehnologija koja pra ti gensku terapiju veoma se brzo razvija i već se uspešno primenjuje. Iako je medicina oduvek suštinski bila »personalizovana «, prilagođena svakom pacijentu, perso nalizovana medicina danas koristi modernu tehnologiju i znanja iz oblasti molekularne genetike i genomike, omo gućujući stepen personalizacije koji vodi ka značajnom napretku medicinske prakse.

: Keywords gene therapy; molecular diagnosis; molecular genetic markers; molecular-targeted therapy; personalized medicine; pharmacogenomics

Ključne reči : genska terapija; molekularna dijagnostika; molekularno-genetički markeri; ciljana molekularna terapija; personalizovana medicina; farmakogenomika

  • 1. Offit K. Personalized medicine: new genomics, old lessons. Hum Genet 2011; 130: 3-14. [CrossRef]

  • 2. National Cancer Institute, USNIH (2011). http://www.cancer.gov/dictionary/?CdrID=561717. (Accessed 27 Jan 2011)

  • 3. H.R. 5440 (2010) Genomics and personalized medicine act of 2010. http://www.opencongress.org/bill/111-h5440/text. Accessed 27 Jan 2011

  • 4. Steele FR. Personalized medicine: something old, something new. Pers Med 2009; 6: 1-5. [CrossRef]

  • 5. Gužvić M. The history of DNA sequencing. J Med Biochem 2013; 32: 301-12.

  • 6. Pavlović S. TPMT gene polymorphisms: on the doorstep of personalized medicine. Indian J Med Res 2009; 129(5): 478-80.

  • 7. Pavlović S, Zukić B, Stojiljković M. Personalizovana medicina. In: Antonić S and Popović A, editors. Matične ćelije i genetika u službi čovečanstva. Beograd: Univerzitetska biblioteka Svetozar Marković, 2013: 8-26.

  • 8. Lueking A, Possling A, Huber O, Beveridge A, Horn M, Eickhoff H, Schuchardt J, et al. A nonredundant human protein chip for antibody screening and serum profiling. Mol Cell Proteomics 2003; 2: 1342-9. [CrossRef]

  • 9. Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol 2013; 9: 640. [PubMed]

  • 10. Gorreta F, Carbone W, Barzaghi D. Genomic profiling: cDNA arrays and oligoarrays. Methods Mol Biol 2012; 823: 89-105.

  • 11. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol 2012; 8(12): e1002822.

  • 12. Drmanac R. Medicine. The ultimate genetic test. Science 2012; 336(6085): 1110-12.

  • 13. Human Genome Project (http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml)

  • 14. HapMap Project (http://hapmap.ncbi.nlm.nih.gov/)

  • 15. Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung Med J 2012; 35(2): 96-110.

  • 16. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74(12): 5463-7. [CrossRef]

  • 17. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012; 2012: 251364.

  • 18. Henson J, Tischler G, Ning Z. Next-generation se qu encing and large genome assemblies. Pharmacogenomics 2012; 13(8): 901-15. [CrossRef]

  • 19. Harrison RJ. Understanding genetic variation and function - the applications of next generation sequencing. Se min Cell Dev Biol 2012; 23(2): 230-6.

  • 20. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008; 452(7189): 872-6.

  • 21. Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P, Alexeev A, et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 2012; 487(7406): 190-5.

  • 22. National Institute of Health (NIH), A Catalog of Published Genome-Wide Association Studies (http://www.genome.gov/gwastudies/)

  • 23. Antonarakis SE, Kazazian HH Jr, Orkin SH. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet 1985; 69: 1-14. [CrossRef]

  • 24. J. Zschocke. Phenylketonuria mutations in Europe. Hum Mutat 2003; 21: 345-56.

  • 25. Cystic Fibrosis Mutation Data Base (http://www.genet.sickkids.on.ca/cftr/)

  • 26. Pavlović S, Urošević J, Poznanić J, Perišić Lj, Petručev B, Tošić N, et al. Molecular basis of thalassemia syndromes in Serbia and Montenegro. Acta Haematol 2005; 113: 175-80. [CrossRef]

  • 27. Radmilović M, Zukić B, Stanković B, Karan-Đurašević T, Stojiljković M, Spasovski, et al. Thalassemia Syndromes in Serbia: An update. Hemoglobin 2010; 34(5): 477-85. [CrossRef]

  • 28. Stojiljković M, Jovanović J, Đorđević M, Grković S, Cvorkov Dražić M, Petručev B, et al. Molecular and phenotypic characteristics of phenylketonuria patients in Serbia and Montenegro. Clin Genet 2006; 70: 151-5. [CrossRef]

  • 29. Dabović B, Radojković D, Minić P, Savić J, Savić A. Frequency of the delta F508 deletion and G551D, R553X and G542X mutations in Yugoslav CF patients. Hum Genet 1992; 88(6): 699-700.

  • 30. Lazić J, Tošić N, Dokmanović L, Krstovski N, Rodić P, Pavlović S, et al. Clinical features of the most common fusion genes in childhood acute lymphoblastic leukemia. Med Oncol 2010; 27(2): 449-53. [CrossRef]

  • 31. Pui CH, Relling MV, Downing R. Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535-48.

  • 32. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Faber Consortium Protocol 91-01. Blood 2001; 97: 1211-18. [CrossRef]

  • 33. Gaynon PS. Childhood ALL and relapse. Br J Haematol 2005; 131: 579-87.

  • 34. Carroll WL, Bhojwani D, Min DJ, Moskowitz N, Raetz EA. Childhood Acute Lymphoblastic leukemia in the age of genomics. Pediatr Blood Cancer 2006; 46: 570-8. [CrossRef]

  • 35. Panzer-Grumayer ER, Schneider M, Pancer S, Fasching K, Gadner H. Rapid molecular response during early induction therapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790-4.

  • 36. Biondi A, Valesecchi MG, Seriu T, D'Aniello E, Willemse MJ, Fasching K. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 2000; 14: 1939-43. [CrossRef]

  • 37. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7(4): 233-5. [CrossRef]

  • 38. Szczepanski T, Orfao A, van der Velden VHJ, San Miguel JF, van Dongen JJM. Minimal residual disease in leukemia patients. Lancet Oncol 2001; 2: 409-17. [CrossRef]

  • 39. Wolf CR, Smith G, Smith RL. Science, medicine, and the future: Pharmacogenetics. BMJ 2000; 320(7240): 987-90.

  • 40. Chua EW, Kennedy MA. Current State and Future Prospects of Direct-to-Consumer Pharmacogenetics. Front Pharmacol 2012; 3: 152.

  • 41. Tauser RG. Matching the right foundation at personalized medicine in the right genomic era. In: Sanoudou D, editor. Clinical Applications of Pharmacogenetics, InTech, Rijeka, Croatia, 2012: 3-34.

  • 42. Pavlović S, Zukić B, Nikčević G. Pharmacogenomics of Thiopurine S-Methyltransferase: Clinical Applicability of Genetic Variants. In: Sanoudou D, editor. Clinical Applications of Pharmacogenetics, InTech, Rijeka, Croatia, 2012: 75-94.

  • 43. D’Andrea G, D’Ambrosio RL, Di Perna P Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005; 105: 645-9. [CrossRef]

  • 44. Kovač M, Rakićević L, Kušić-Tišma J, Radojković D. Pharmacogenetic tests could be helpful in predicting of VKA maintenance dose in elderly patients at treatment initiation. J Thromb Thrombolysis 2013; 35(1): 90-4. [CrossRef]

  • 45. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717-19.

  • 46. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 2007; 99: 1290-5.

  • 47. Dokmanović L, Urošević J, Janić D, Jovanović N, Petručev B, Tošić N, et al. Analysis of thiopurine Smethyltransferase Polymorhism in the Population of Serbia and Montenegro and Mercaptopurine Therapy Tolerance in Childhood Acute Lymphoblastic Leukemia. Ther Drug Monit 2006; 28: 800-6. [CrossRef]

  • 48. Dokmanović L, Janić D, Krstovski N, Zukić B, Tošić N, Pavlović S. Importance of genotyping of thiopurine Smethyltransferase in children with acute lymphoblastic leukaemia during maintenance therapy. Srp Arh Celok Lek 2008; 136(11-12): 609-16.

  • 49. Mette L, Mitropoulos K, Vozikis A, Patrinos GP. Pharmacogenomics and public health: implementing 'populationalized' medicine. Pharmacogenomics 2012; 13(7): 803-13. [CrossRef]

  • 50. Pharmacogenetic for Every Nation Initiative Project (http://www.pgeni.org/)

  • 51. Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB) (http://www.pharmgkb.org/)

  • 52. American Food and Drug Administration (http://www.fda.gov/)

  • 53. European Medicines Agency (http://www.ema.europa.eu/ema/)

  • 54. Pharmaceutical and Medical Devices Agency (http://www.pmda.go.jp/english/)

  • 55. Lin OS. Colorectal cancer screening in patients at moderately increased risk due to family history. World J Gastrointest Oncol 2012; 4(6): 125-30. [CrossRef]

  • 56. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology 2010; 138(6): 2044-58.

  • 57. Christinat A, Pagani O. Practical aspects of genetic counseling in breast cancer: Lights and shadows. Breast 2013; doi. S0960-9776(13)00087-8. 10.1016/j.breast. 2013.04.006. [CrossRef]

  • 58. Dobričić J, Krivokuća A, Brotto K, Mališić E, Radulović S, Branković-Magić M. Serbian high-risk families: extensive results on BRCA mutation spectra and frequency. J Hum Genet 2013; doi: 10.1038/jhg.2013.30. [PubMed] [CrossRef]

  • 59. Protić M, Pavlović S, Bojić D, Krstić M, Radojičić Z, Tarabar D, et al. CARD15 gene polymorphism in Serbian patients with Crohn’s disease: genotype-phenotype analysis. Eur J Gastroenterol Hepatol 2008; 20(10): 978-84. [CrossRef]

  • 60. Anderson CA, Massey DC, Barrett JC, Prescott NJ, Tremelling M, Fisher SA, et al. Investigation of Crohn's disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 2009; 136(2): 523-9.

  • 61. O'Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med 2011; 365: 2098-109.

  • 62. Baudin B. Polymorphism in angiotensin II receptor genes and hypertension. Exp Physiol 2005; 90(3): 277-82. [CrossRef]

  • 63. Tabara Y, Kohara K, Miki T. Millennium Genome Project for Hypertension. Hunting for genes for hypertension: the Millennium Genome Project for Hypertension. Hypertens Res 2012; 35(6): 567-73. [CrossRef]

  • 64. McClure A, Lunt M, Eyre S, Ke X, Thomson W, Hinks A, Bowes J, et al. Investigating the viability of genetic screening/testing for RA susceptibility using combinations of five confirmed risk loci. Rheumatology (Oxford) 2009; 48(11):1369-74. Erratum in: Rheumatology (Oxford) 2011; 50(6): 1178. [CrossRef]

  • 65. Cummings SA, Rubin DT. The complexity and challenges of genetic counseling and testing for inflammatory bowel disease. J Genet Couns 2006; 15(6): 465-76. [CrossRef]

  • 66. Vermeire S. Review article: genetic susceptibility and application of genetic testing in clinical management of inflammatory bowel disease. Aliment Pharmacol Ther 2006; 24 Suppl 3: 2-10. [CrossRef]

  • 67. Đorđević V, Rakičević L, Radojković D. An overview of genetic risk factors in thrombophilia. Srp Arh Celok Lek 2010; 138: Suppl 1: 79-8.

  • 68. Castellani C, Cuppens H, Macek M Jr, Cassiman JJ, Kerem E, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 2008; 7(3): 179-96. [CrossRef]

  • 69. Rodić P, Pavlović S, Kostić T, Suvajdžić Vuković N, Đorđević M, [umarac Z, et al. Gammopathy and B lymphocyte clonality in patients with Gaucher type I disease. Blood Cells Mol Dis 2013; 50(3): 222-5. [CrossRef]

  • 70. Topić A, Stanković M, Divac-Rankov A, Petrović-Sta noje vić N, Mitić-Milikić M, Nagorni-Obradović L, et al. Alpha-1-antitrypsin deficiency in Serbian adults with lung diseases. Genet Test Mol Biomarkers 2012; 16(11): 1282-6. [CrossRef]

  • 71. Sarić M, Zamurović Lj, Keckarević-Marković M, Keckarević D, Stevanović M, Savić-Pavićević D, et al. Frequency of the hemochromatosis gene mutations in the population of Serbia and Montenegro. Clin Genet 2006; 70(2): 170-2. [CrossRef]

  • 72. Sniderman King L, Trahms C, Scott CR. Tyrosinemia Type 1. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. SourceGeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2006 Jul 24 [updated 2011 Aug 25].

  • 73. Clarke LA, Heppner J. Mucopolysaccharidosis Type I. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviewsTM [Internet]. Seattle (WA): Univer sity of Washington, Seattle; 1993-2002 Oct 31 [upda ted 2011 Jul 21].

  • 74. Lavant EH, Agardh DJ, Nilsson A, Carlson JA. A new PCR-SSP method for HLA DR-DQ risk assessment for ce liac disease. Clin Chim Acta 2011; 412(9-10): 782-4.

  • 75. Usai-Satta P, Scarpa M, Oppia F, Cabras F. Lactose malabsorption and intolerance: What should be the best clinical management? World J Gastrointest Pharmacol Ther 2012; 3(3): 29-33. [CrossRef]

  • 76. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet 2004; 41(10): 758-62.

  • 77. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006; 295(10): 1135-41.

  • 78. Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011; 8(11): e1001116.

  • 79. Levy E, Ménard D, Delvin E, Stan S, Mitchell G, Lambert M, et al. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 2001; 276(43): 39679-84.

  • 80. Ukkola O, Tremblay A, Bouchard C. Beta-2 adrenergic receptor variants are associated with subcutaneous fat accumulation in response to long-term overfeeding. Int J Obes Relat Metab Disord 2001; 25(11): 1604-8. [CrossRef]

  • 81. Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC, et al. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet 2003; 12(22): 2923-9. [CrossRef]

  • 82. Marti A, Corbalán MS, Martínez-Gonzalez MA, Martinez JA. TRP64ARG polymorphism of the beta 3- adrenergic receptor gene and obesity risk: effect modification by a sedentary lifestyle. Diabetes Obes Metab 2002; 4(6): 428-30. [CrossRef]

  • 83. Goldman JM, Melo JV. Chronic myeloid leuke mia- advances in biology and new approaches to treatment. N Engl J Med 2003; 349(15): 1451-64.

  • 84. Fausel C. Targeted chronic myeloid leukemia therapy: See king a cure. Am J Health Syst Pharm 2007; 64: 9-15. [CrossRef]

  • 85. Stegmeier F, Warmuth M, Sellers WR, Dorsch M. Targeted Cancer Therapies in the Twenty-First Century: Lessons From Imatinib. Clin Pharmacol Ther 2010; 87(5): 543-52. [CrossRef]

  • 86. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354(24): 2531-41.

  • 87. Koldehoff M, Kordelas L, Beelen DW, Elmaagacli AH. Small interfering RNA against BCR-ABL transcripts sen- sitize mutated T315I cells to nilotinib. Haematol 2010; 95(3): 388-97.

  • 88. Pavlović S, Tošić N. Molecular genetics of acute myeloid leukemia. Global J Biochem 2012; 3(8): 1-16.

  • 89. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815-18.

  • 90. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, et al. All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997; 337: 1021-8. [CrossRef]

  • 91. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E, et al. A randomized comparison of alltrans retinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood 1999; 94: 1192-200.

  • 92. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Woods WG, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Inter group Protocol. Blood 2002; 100: 4298-302. [CrossRef]

  • 93. Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leuke mia. J Clin Oncol 2001; 19: 3852-60.

  • 94. Estey E, Garcia-Manero G, Ferrajoli A, Faderl S, Verstovsek S, Jones D, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006; 107: 3469-73. [CrossRef]

  • 95. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): As2O3 exerts dose dependent dual effects on APL cells. Blood 1997; 89: 3345-53.

  • 96. Chim CS, Wong AS, Kwong YL. Infrequent hypermethylation of CEBPA promotor in acute myeloid leukaemia. Br J Haematol 2002; 119: 988-90. [CrossRef]

  • 97. Figueroa ME, Reimers M, Thompson RF, Ye K, Li Y, Selzer RR, et al. An integrative genomic and epigenomic approach for the study of transcriptional regulation. PloS ONE 2008; 3: e1882. [CrossRef]

  • 98. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457-63.

  • 99. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957-64.

  • 100. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5- aza-2-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103: 1635-40. [CrossRef]

  • 101. Garcia-Manero G. Demethylating agents in myeloid malignancies. Curr Opin Oncol 2008; 20: 705-10. [CrossRef]

  • 102. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769-84. [CrossRef]

  • 103. Downward J. Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11-22. [CrossRef]

  • 104. Miyashita T, Reed JC. Bcl2 oncoprotein blocks chemotherapy-induced apoptosis in human leukemia cell line. Blood 1993; 81: 151-7.

  • 105. Marcucci G, Byrd JC, Dai G, Klisović MI, Kourlas PJ, Young DC, et al. Phase 1 and pharmacokinetic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003; 101: 425-32.

  • 106. Marcucci G, Stock W, Dai G, Klisovic RB, Liu S, Klisovic MI, et al. Phase II study of oblimersend sodium an antisense to Bcl2 in untreated older patients with AML. J Clin Oncol 2005; 23: 3404-11.

  • 107. MacConaill LE, Garraway LA. Clinical Implications of the Cancer Genome. J Clin Oncol 2010; 28: 5219-28. [CrossRef]

  • 108. Anderson WF. Prospects for human gene therapy. Science 1984; 226: 401-9. [CrossRef]

  • 109. Friedmann T. Progress toward human gene therapy. Science 1989; 244: 1275-81.

  • 110. Yamamoto M, Curiel DT. Cancer gene therapy. Technol Cancer Res Treat 2005; 4(4): 315-30.

  • 111. Goff S, Berg P. Construction of hybrid viruses containing SV40 and lambda; phage DNA segments and their propagation in cultured monkey cells. Cell 1976; 9(4): 695-705. [CrossRef]

  • 112. Eglitis MA, Anderson WF. Retroviral vectors for introduction of genes into mammalian cells. Biotechniques 1988; 6(7): 608-14.

  • 113. Anderson WF. Human gene therapy. Science 1992; 256(5058): 808-13.

  • 114. Cavazzana-Calvo M, Lagresle C, Hacein-Bey-Abina S, Fischer A. Gene therapy for severe combined immunodeficiency. Annu Rev Med 2005; 56: 585-602. [CrossRef]

  • 115. Babić N. Clinical pharmacogenomics and concept of personalizad medicine. J Med Biochem 2012; 31: 281-6.

  • 116. Johnston J, Baylis F. What ever happened to gene therapy? A review of recent events. Clin Res 2004; 4: 11-15.

  • 117. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2- Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science 2003; 302 (5644): 415-19.

  • 118. Lehrman S. Virus treatment questioned after gene therapy death. Nature 1999; 401: 517-18.

  • 119. Kastelein JJP, Colin JD, Ross CJD, Hayden M. From Mutation Identification to Therapy: Discovery and Origins of the First Approved Gene Therapy in the Western World. Hum Gene Ther 2013; 24: 472-8. [CrossRef]

  • 120. Carpentier AC, Frisch F, Labbé SM, Gagnon R, de Wal J, Greentree S, et al. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandialchylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab 2012; 97: 1635-44.

  • 121. Brunzell J, Deeb S. Familial lipoprotein lipase deficiency, ApoCII deficiency, and hepatic lipase deficiency. In: CR Sciver, Al Beaudet, WS Sly, D Vale, editors. The Metabolic and Molecular Bases of Inherited Disease, 8th ed. New York, NY: McGraw-Hill Inc, 2000: 2789-816.

  • 122. Anderson WF. The best of times, the worst of times.Science 2000; 288: 627-9.

Comments (0)

Please log in or register to comment.