Jump to ContentJump to Main Navigation
Show Summary Details

Open Mathematics

formerly Central European Journal of Mathematics

Editor-in-Chief: Gianazza, Ugo / Vespri, Vincenzo


IMPACT FACTOR 2015: 0.512

SCImago Journal Rank (SJR) 2015: 0.521
Source Normalized Impact per Paper (SNIP) 2015: 1.233
Impact per Publication (IPP) 2015: 0.546

Mathematical Citation Quotient (MCQ) 2015: 0.39

Open Access
Online
ISSN
2391-5455
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Invariant sets and Knaster-Tarski principle

1Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100, Toruń, Poland

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Mathematics. Volume 10, Issue 6, Pages 2077–2087, ISSN (Online) 2391-5455, DOI: 10.2478/s11533-012-0109-4, October 2012

Publication History

Published Online:
2012-10-12

Abstract

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

MSC: 54H25; 47H08; 54H20

Keywords: Invariant in closure set; Barnsley-Hutchinson operator; Fixed point; Monotone map; Measure of noncompactness; Strongly condensing multifunction

  • [1] Abian S., Brown A.B., A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., 1961, 13, 78–82 http://dx.doi.org/10.4153/CJM-1961-007-5 [CrossRef]

  • [2] Akhmerov R.R., Kamenskiĭ M.I., Potapov A.S., Rodkina A.E., Sadovskiĭ B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992

  • [3] Akin E., The General Topology of Dynamical Systems, Grad. Stud. Math., 1, American Mathematical Society, Providence, 1993

  • [4] Andres J., Fišer J., Metric and topological multivalued fractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 14(4), 1277–1289 http://dx.doi.org/10.1142/S021812740400979X [CrossRef]

  • [5] Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons Fractals, 2005, 24(3), 665–700 http://dx.doi.org/10.1016/j.chaos.2004.09.029 [CrossRef]

  • [6] Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems, Topol. Fixed Point Theory Appl., 1, Kluwer, Dordrecht, 2003

  • [7] Andres J., Väth M., Calculation of Lefschetz and Nielsen numbers in hyperspaces for fractals and dynamical systems, Proc. Amer. Math. Soc., 2007, 135(2), 479–487 http://dx.doi.org/10.1090/S0002-9939-06-08505-4 [CrossRef]

  • [8] Ayerbe Toledano J.M., Domínguez Benavides T., López Acedo G., Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl., 99, Birkhäuser, Basel, 1997 http://dx.doi.org/10.1007/978-3-0348-8920-9 [CrossRef]

  • [9] Banaś J., Goebel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980

  • [10] Bandt Ch., On the metric structure of hyperspaces with Hausdorff metric, Math. Nachr., 1986, 129, 175–183 http://dx.doi.org/10.1002/mana.19861290116 [CrossRef]

  • [11] Barbashin E.A., On the theory of general dynamical systems, Učenye Zap. Moskov. Gos. Univ. Matematika, 1948, 135(2), 110–133 (in Russian)

  • [12] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.0057 [CrossRef]

  • [13] Barnsley M.F., Vince A., Real projective iterated function systems, J. Geom. Anal. (in press), DOI: 10.1007/s12220-011-9232-x [CrossRef]

  • [14] Beer G., Topologies on Closed and Closed Convex Sets, Math. Appl., 268, Kluwer, Dordrecht, 1993

  • [15] Birkhoff G.D., Dynamical Systems, American Mathematical Society, New York, 1927

  • [16] Bloom S.L., Ésik Z., The equational logic of fixed points, Theoret. Comput. Sci., 1997, 179(1–2), 1–60 http://dx.doi.org/10.1016/S0304-3975(96)00248-4 [CrossRef]

  • [17] Bogdewicz A., Herburt I., Moszyńska M., Quotient metrics with applications in convex geometry, Beitr. Algebra Geom. (in press), DOI: 10.1007/s13366-011-0082-2 [CrossRef]

  • [18] Carl S., Heikkilä S., Fixed Point Theory in Ordered Sets and Applications, Springer, New York, 2011 http://dx.doi.org/10.1007/978-1-4419-7585-0 [CrossRef]

  • [19] Chueshov I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Univ. Lektsii Sovrem. Mat., AKTA, Kharkov, 1999 (in Russian)

  • [20] Conley C., Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38, American Mathematical Society, Providence, 1978

  • [21] Conley C., Easton R., Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 1971, 158, 35–61 http://dx.doi.org/10.1090/S0002-9947-1971-0279830-1 [CrossRef]

  • [22] Conti G., Obukhovskiĭ V., Zecca P., On the topological structure of the solution set for a semilinear functionaldifferential inclusion in a Banach space, In: Topology in Nonlinear Analysis, Warsaw, September 5–18 and October 10–15, 1994, Banach Center Publ., 35, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1996, 159–169

  • [23] De Blasi F.S., Georgiev P.Gr., Hukuhara’s topological degree for non compact valued multifunctions, Publ. Res. Inst. Math. Sci., 2003, 39(1), 183–203 http://dx.doi.org/10.2977/prims/1145476153 [CrossRef]

  • [24] De Blasi F.S., Myjak J., A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl., 1983, 92(2), 445–451 http://dx.doi.org/10.1016/0022-247X(83)90261-5 [CrossRef]

  • [25] Edalat A., Dynamical systems, measures and fractals via domain theory, Inform. and Comput., 1995, 120(1), 32–48 http://dx.doi.org/10.1006/inco.1995.1096 [CrossRef]

  • [26] Edwards R.E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965

  • [27] Elton J.H., An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 1987, 7(4), 481–488 http://dx.doi.org/10.1017/S0143385700004168 [CrossRef]

  • [28] Fečkan M., Topological Degree Approach to Bifurcation Problems, Topol. Fixed Point Theory Appl., 5, Springer, New Yok, 2008

  • [29] Fleiner T., A fixed-point approach to stable matchings and some applications, Math. Oper. Res., 2003, 28(1), 103–126 http://dx.doi.org/10.1287/moor.28.1.103.14256 [CrossRef]

  • [30] Góebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990

  • [31] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, 2nd ed., Topol. Fixed Point Theory Appl., 4, Springer, Dordrecht, 2006

  • [32] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003

  • [33] Hale J.K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., 25, American Mathematical Society, Providence, 1988

  • [34] Hata M., On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A Math. Sci., 1985, 61(4), 99–102 http://dx.doi.org/10.3792/pjaa.61.99 [CrossRef]

  • [35] Hayashi S., Self-similar sets as Tarski’s fixed points, Publ. Res. Inst. Math. Sci., 1985, 21(5), 1059–1066 http://dx.doi.org/10.2977/prims/1195178796 [CrossRef]

  • [36] Heikkilä S., On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal., 1990, 14(5), 413–426 http://dx.doi.org/10.1016/0362-546X(90)90082-R [CrossRef]

  • [37] Heikkilä S., Fixed point results and their applications to Markov processes, Fixed Point Theory Appl., 2005, 3, 307–320

  • [38] Hitzler P., Seda A.K., Generalized metrics and uniquely determined logic programs, Theoret. Comput. Sci., 2003, 305(1–3), 187–219 http://dx.doi.org/10.1016/S0304-3975(02)00709-0 [CrossRef]

  • [39] Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis I, Math. Appl., 419, Kluwer, Dordrecht, 1997

  • [40] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 [CrossRef]

  • [41] Illanes A., Nadler S.B. Jr., Hyperspaces, Monogr. Textbooks Pure Appl. Math., 216, Marcel Dekker, New York, 1999

  • [42] Iosifescu M., Iterated function systems. A critical survey, Math. Rep. (Bucur.), 2009, 11(61)(3), 181–229

  • [43] Jachymski J., Order-theoretic aspects of metric fixed point theory, In: Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 613–641

  • [44] Jachymski J., Gajek L., Pokarowski P., The Tarski-Kantorovitch principle and the theory of iterated function systems, Bull. Austral. Math. Soc., 2000, 61(2), 247–261 http://dx.doi.org/10.1017/S0004972700022243 [CrossRef]

  • [45] Joseph J.E., Multifunctions and graphs, Pacific J. Math., 1978, 79(2), 509–529

  • [46] Kantorovitch L., The method of successive approximation for functional equations, Acta Math., 1939, 71, 63–97 http://dx.doi.org/10.1007/BF02547750 [CrossRef]

  • [47] Kieninger B., Iterated Function Systems on Compact Hausdorff Spaces, PhD thesis, Universität Augsburg, 2002

  • [48] Knaster B., Un théorème sur les fonctions d’ensembles, Annales de la Société Polonaise de Mathématique, 1928, 6, 133–134

  • [49] Krasnosel’skii M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964

  • [50] Kuratowski C., Topologie I, Monogr. Mat., 20, PWN, Warsaw, 1958

  • [51] Lasota A., Myjak J., Attractors of multifunctions, Bull. Polish Acad. Sci. Math., 2000, 48(3), 319–334

  • [52] Leśniak K., Extremal sets as fractals, Nonlinear Anal. Forum, 2002, 7(2), 199–208

  • [53] Leśniak K., Stability and invariance of multivalued iterated function systems, Math. Slovaca, 2003, 53(4), 393–405

  • [54] Leśniak K., Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 2004, 52(1), 1–8 http://dx.doi.org/10.4064/ba52-1-1 [CrossRef]

  • [55] Leśniak K., Fixed points of the Barnsley-Hutchinson operators induced by hyper-condensing maps, Matematiche (Catania), 2005, 60(1), 67–80

  • [56] Leśniak K., On the Lifshits constant for hyperspaces, Bull. Pol. Acad. Sci. Math., 2007, 55(2), 155–160 http://dx.doi.org/10.4064/ba55-2-6 [CrossRef]

  • [57] Leśniak K., Note on the Kuratowski theorem for abstract measures of noncompactness, preprint available at www-users.mat.umk.pl/_much/works/kuratow.ps

  • [58] Marchaud A., Sur les champs de demi-droites et les équations différentielles du premier ordre, Bull. Soc. Math. France, 1934, 62, 1–38

  • [59] Mauldin R.D., Urbański M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 1996, 73(1), 105–154 http://dx.doi.org/10.1112/plms/s3-73.1.105 [CrossRef]

  • [60] McGehee R., Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 1992, 41(4), 1165–1209 http://dx.doi.org/10.1512/iumj.1992.41.41058 [CrossRef]

  • [61] Melnik V.S., Valero J., On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 1998, 6(1), 83–111 http://dx.doi.org/10.1023/A:1008608431399 [CrossRef]

  • [62] Ok E.A., Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., 2004, 56(3), 309–330 http://dx.doi.org/10.1016/j.na.2003.08.001 [CrossRef]

  • [63] d’Orey V., Fixed point theorems for correspondences with values in a partially ordered set and extended supermodular games, J. Math. Econom., 1996, 25(3), 345–354 http://dx.doi.org/10.1016/0304-4068(95)00728-8 [CrossRef]

  • [64] Petruşel A., Rus I.A., Dynamics on (P cp(X), H d) generated by a finite family of multi-valued operators on (X, d), Math. Morav., 2001, 5, 103–110

  • [65] Ponomarev V.I., On common fixed set for two continuous multivalued selfmappings of bicompactum, Colloq. Math. 1963, 10, 227–231 (in Russian)

  • [66] Ran A.C.M., Reurings M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004, 132(5), 1435–1443 http://dx.doi.org/10.1090/S0002-9939-03-07220-4 [CrossRef]

  • [67] Schröder B.S.W., Algorithms for the fixed point property, Theoret. Comput. Sci., 1999, 217(2), 301–358 http://dx.doi.org/10.1016/S0304-3975(98)00273-4 [CrossRef]

  • [68] Šeda V., On condensing discrete dynamical systems, Math. Bohem., 2000, 125(3), 275–306

  • [69] Soto-Andrade J., Varela F.J., Self-reference and fixed points: a discussion and an extension of Lawvere’s theorem, Acta Appl. Math., 1984, 2(1), 1–19 http://dx.doi.org/10.1007/BF01405490 [CrossRef]

  • [70] Stenflo Ö., A survey of average contractive iterated function systems, J. Difference Equ. Appl., 2012, 18(8), 1355–1380 http://dx.doi.org/10.1080/10236198.2011.610793 [CrossRef]

  • [71] Strother W., Fixed points, fixed sets, and M-retracts, Duke Math. J., 1955, 22(4), 551–556 http://dx.doi.org/10.1215/S0012-7094-55-02261-4 [CrossRef]

  • [72] Tarafdar E.U., Chowdhury M.S.R., Topological Methods for Set-Valued Nonlinear Analysis, World Scientific, Hackensack, 2008 http://dx.doi.org/10.1142/6347 [CrossRef]

  • [73] Tarski A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 1955, 5(2), 285–309

  • [74] de Vries J., Elements of Topological Dynamics, Math. Appl., 257, Kluwer, Dordrecht, 1993

  • [75] Waszkiewicz P., Kostanek M., Reconciliation of elementary order and metric fixpoint theorems (manuscript)

  • [76] Wicks K.R., Fractals and Hyperspaces, Lecture Notes in Math., 1492, Springer, Berlin, 1991

  • [77] Yamaguchi M., Hata M., Kigami J., Transl. Math. Monogr., 167, Mathematics of Fractals, American Mathematical Society, Providence, 1997

  • [78] Zaremba S.C., Sur les équations au paratingent, Bull. Sci. Math., 1936, 60, 139–160

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Radu Miculescu and Alexandru Mihail
Journal of Mathematical Analysis and Applications, 2013, Volume 407, Number 1, Page 56

Comments (0)

Please log in or register to comment.