Jump to ContentJump to Main Navigation

Open Medicine

formerly Central European Journal of Medicine

1 Issue per year


IMPACT FACTOR 2014: 0.153
5-year IMPACT FACTOR: 0.183

SCImago Journal Rank (SJR) 2014: 0.135
Source Normalized Impact per Paper (SNIP) 2014: 0.124
Impact per Publication (IPP) 2014: 0.193

Open Access
VolumeIssuePage

Issues

Genetic effects, gene-lifestyle interactions, and type 2 diabetes

1Departments of Nutrition and Epidemiology, Harvard School of Public Health, and Channing Laboratory, Boston, Massachusetts, 02115, USA

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Medicine. Volume 3, Issue 1, Pages 1–7, ISSN (Online) 2391-5463, DOI: 10.2478/s11536-007-0051-1, March 2008

Publication History

Published Online:
2008-03-01

Abstract

Type 2 diabetes has become a major public health challenge worldwide. It is now widely accepted that genetic components affect the development of type 2 diabetes, in concert with environmental factors such as lifestyle and diet. Traditional linkage mapping, positional cloning, and candidate gene-based association studies have identified a few genetic variants in genes such as TCF7L2, PPARG, and KCNJ11 that are reproducibly related to the risk of type 2 diabetes. To date, about ten genome-wide association (GWA) studies have been published. These studies discovered new susceptibility genes for type 2 diabetes and provide novel insight into the diabetes etiology. In addition, data especially from lifestyle intervention trials display promising evidence that the genetic variants may interact with changes of dietary habit and physical activity in predisposing to type 2 diabetes. The gene-lifestyle interactions merit extensive exploration in large, prospective studies. The findings from these areas will substantially improve the prediction and prevention of type 2 diabetes.

Keywords: Genetics; Gene-environment interactions; And type 2 diabetes

  • [1] Wild S., Roglic G., Green A., Sicree R., King H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, 1047–1053 http://dx.doi.org/10.2337/diacare.27.5.1047 [CrossRef]

  • [2] Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes, Nature, 2007, 445, 881–885 http://dx.doi.org/10.1038/nature05616 [CrossRef]

  • [3] Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., Duren W.L., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants, Science, 2007, 316, 1341–1345 http://dx.doi.org/10.1126/science.1142382 [CrossRef]

  • [4] Salonen J.T., Uimari P., Aalto J.M., Pirskanen M., Kaikkonen J., Todorova B., et al., Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium, Am. J. Hum. Genet. 2007, 81, 338–345 http://dx.doi.org/10.1086/520599 [CrossRef]

  • [5] Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., et al., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes, Science, 2007, 316, 1336–1341 http://dx.doi.org/10.1126/science.1142364 [CrossRef]

  • [6] Hunter D.J., Gene-environment interactions in human diseases, Nat. Rev. Genet., 2005, 6, 287–298 http://dx.doi.org/10.1038/nrg1578 [CrossRef]

  • [7] Knowler W.C., Pettitt D.J., Savage P.J., Bennett P.H., Diabetes incidence in Pima indians: contributions of obesity and parental diabetes, Am. J. Epidemiol., 1981, 113, 144–156

  • [8] Harris M.I., Hadden W.C., Knowler W.C., Bennett P.H., Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74 yr., Diabetes, 1987, 36, 523–534 http://dx.doi.org/10.2337/diabetes.36.4.523 [CrossRef]

  • [9] Mitchell B.D., Valdez R., Hazuda H.P., Haffner S.M., Monterrosa A., Stern M.P., Differences in the prevalence of diabetes and impaired glucose tolerance according to maternal or paternal history of diabetes, Diabetes Care, 1993, 16, 1262–1267 http://dx.doi.org/10.2337/diacare.16.9.1262 [CrossRef]

  • [10] Thomas F., Balkau B., Vauzelle-Kervroedan F., Papoz L., Maternal effect and familial aggregation in NIDDM. The CODIAB Study. CODIAB-INSERMZENECA Study Group, Diabetes, 1994, 43, 63–67 http://dx.doi.org/10.2337/diabetes.43.1.63 [CrossRef]

  • [11] De Silva S.N., Weerasuriya N., De Alwis N.M., De Silva M.W., Fernando D.J., Excess maternal transmission and familial aggregation of Type 2 diabetes in Sri Lanka. Diabetes Res. Clin. Pract. 2002, 58, 173–177 http://dx.doi.org/10.1016/S0168-8227(02)00152-3 [CrossRef]

  • [12] Arfa I., Abid A., Malouche D., Ben Alaya N., Azegue T.R., Mannai I., et al., Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia, Postgrad. Med. J., 2007, 83, 348–351 http://dx.doi.org/10.1136/pgmj.2006.053744 [CrossRef]

  • [13] Viswanathan M., McCarthy M.I., Snehalatha C., Hitman G.A., Ramachandran A., Familial aggregation of type 2 (non-insulin-dependent) diabetes mellitus in south India; absence of excess maternal transmission, Diabet. Med., 1996, 13, 232–237 http://dx.doi.org/10.1002/(SICI)1096-9136(199603)13:3<232::AID-DIA27>3.0.CO;2-7 [CrossRef]

  • [14] Valdez R., Yoon P.W., Liu T., Khoury M.J., Family history and prevalence of diabetes in the US population: 6-year results from the National Health and Nutrition Examination Survey (NHANES, 1999 2004), Diabetes, 2007, (in press)

  • [15] Newman B., Selby J.V., King M.C., Slemenda C., Fabsitz R., Friedman G.D., Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins, Diabetologia, 1987, 30, 763–768 http://dx.doi.org/10.1007/BF00275741 [CrossRef]

  • [16] Barnett A.H., Eff C., Leslie R.D., Pyke D.A., Diabetes in identical twins. A study of 200 pairs, Diabetologia, 1981, 20, 87–93 http://dx.doi.org/10.1007/BF00262007 [CrossRef]

  • [17] Gottlieb M.S., Root H.F., Diabetes mellitus in twins, Diabetes, 1968, 17, 693–704 [PubMed] [CrossRef]

  • [18] Kaprio J., Tuomilehto J., Koskenvuo M., Romanov K., Reunanen A., Eriksson J., et al., Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland, Diabetologia, 1992, 35, 1060–1067 http://dx.doi.org/10.1007/BF02221682 [CrossRef]

  • [19] Poulsen P, Kyvik K.O., Vaag A., Beck-Nielsen H., Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study, Diabetologia, 1999, 42, 139–145 http://dx.doi.org/10.1007/s001250051131 [CrossRef]

  • [20] Barroso I., Genetics of Type 2 diabetes, Diabet. Med., 2005, 22, 517–535 http://dx.doi.org/10.1111/j.1464-5491.2005.01550.x [CrossRef]

  • [21] Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., et al., Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med., 2006, 355, 456–466. http://dx.doi.org/10.1056/NEJMoa055068 [CrossRef]

  • [22] Gloyn A.L., Pearson E.R., Antcliff J.F., Proks P., Bruining G.J., Slingerland A.S., et al., Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes., N. Engl. J. Med., 2004, 350, 1838–1849 http://dx.doi.org/10.1056/NEJMoa032922 [CrossRef]

  • [23] van den Ouweland J.M., Lemkes H.H., Trembath R.C., Ross R., Velho G., Cohen D., et al., Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene, Diabetes, 1994, 43, 746–751 http://dx.doi.org/10.2337/diabetes.43.6.746 [CrossRef]

  • [24] Fajans S.S., Bell G.I., Polonsky K.S., Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young, N. Engl. J. Med., 2001, 345, 971–980 http://dx.doi.org/10.1056/NEJMra002168 [CrossRef]

  • [25] Collins F.S., Positional cloning: let’s not call it reverse anymore, Nat. Genet., 1992, 1, 3–6 http://dx.doi.org/10.1038/ng0492-3 [CrossRef]

  • [26] Hanis C.L., Boerwinkle E., Chakraborty R., Ellsworth D.L., Concannon P., Stirling B., et al., A genome-wide search for human non-insulindependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2, Nat. Genet., 1996, 13, 161–166 http://dx.doi.org/10.1038/ng0696-161 [CrossRef]

  • [27] Horikawa Y., Oda N., Cox N.J., Li X., Orho-Melander M., Hara M., et al., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus, Nat. Genet., 2000, 26, 163–175 http://dx.doi.org/10.1038/79876 [CrossRef]

  • [28] Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., et al., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes, Nat. Genet., 2006, 38, 320–323 http://dx.doi.org/10.1038/ng1732 [CrossRef]

  • [29] Reynisdottir I., Thorleifsson G., Benediktsson R., Sigurdsson G., Emilsson V., Einarsdottir A.S., et al., Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2, Am. J. Hum. Genet., 2003, 73, 323–335 http://dx.doi.org/10.1086/377139 [CrossRef]

  • [30] Cauchi S., El Achhab Y., Choquet H., Dina C., Krempler F., Weitgasser R., et al., TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis, J. Mol. Med., 2007, 85, 777–782 http://dx.doi.org/10.1007/s00109-007-0203-4 [CrossRef]

  • [31] Risch N., Merikangas K., The future of genetic studies of complex human diseases, Science, 1996, 273, 1516–1517 http://dx.doi.org/10.1126/science.273.5281.1516 [CrossRef]

  • [32] Watanabe R.M., Black M.H., Xiang A.H., Allayee H., Lawrence J.M., Buchanan T.A., Genetics of gestational diabetes mellitus and type 2 diabetes, Diabetes Care, 2007, 30, Suppl 2, S134–140 http://dx.doi.org/10.2337/dc07-s205 [CrossRef]

  • [33] Newton-Cheh C., Hirschhorn J.N., Genetic association studies of complex traits: design and analysis issues, Mutat. Res., 2005, 573, 54–69

  • [34] Ludovico O., Pellegrini F., Di Paola R., Minenna A., Mastroianno S., Cardellini M., et al., Heterogeneous effect of peroxisome proliferatoractivated receptor gamma2 Ala12 variant on type 2 diabetes risk, Obesity (Silver Spring), 2007, 15, 1076–1081 http://dx.doi.org/10.1038/oby.2007.617 [CrossRef]

  • [35] Nielsen E.M., Hansen L., Carstensen B., Echwald S.M., Drivsholm T., Glumer C., et al., The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes, Diabetes, 2003, 52, 573–577 http://dx.doi.org/10.2337/diabetes.52.2.573 [CrossRef]

  • [36] Winckler W., Weedon M.N., Graham R.R., McCarroll S.A., Purcell S., Almgren P., et al., Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes, Diabetes, 2007, 56, 685–693 http://dx.doi.org/10.2337/db06-0202 [CrossRef]

  • [37] Gudmundsson J., Sulem P., Steinthorsdottir V., Bergthorsson J.T., Thorleifsson G., Manolescu A., et al., Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes, Nat. Genet., 2007, 39, 977–983 http://dx.doi.org/10.1038/ng2062 [CrossRef]

  • [38] Jorgenson E., Witte J.S., A gene-centric approach to genome-wide association studies, Nat. Rev. Genet., 2006, 7, 885–891 http://dx.doi.org/10.1038/nrg1962 [CrossRef]

  • [39] Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H., et al., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels, Science, 2007, 316, 1331–1336 http://dx.doi.org/10.1126/science.1142358 [CrossRef]

  • [40] Steinthorsdottir V., Thorleifsson G., Reynisdottir I., Benediktsson R., Jonsdottir T., Walters G.B., et al., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes, Nat. Genet., 2007, 39, 770–775 http://dx.doi.org/10.1038/ng2043 [CrossRef]

  • [41] Florez J.C., Manning A.K., Dupuis J., McAteer J., Irenze K., Gianniny L., et al., A 100k Genome-Wide Association Scan for Diabetes and Related Traits in the Framingham Heart Study: Replication and Integration with Other Genome-Wide Datasets, Diabetes 2007, (in press) [CrossRef]

  • [42] Rampersaud E., Damcott C.M., Fu M., Shen H., McArdle P., Shi X., et al., Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: Evidence for replication from diabetesrelated quantitative traits and from independent populations, Diabetes, 2007, (in press) [CrossRef]

  • [43] Hanson R.L., Bogardus C., Duggan D., Kobes S., Knowlton M., Infante A.M., A Search for Variants Associated with Young-Onset Type 2 Diabetes in American Indians in a 100k Genotyping Array, Diabetes, 2007, (in press) [CrossRef]

  • [44] Nemoto M., Sasaki T., Deeb S.S., Fujimoto W.Y., Tajima N., Differential effect of PPARgamma2 variants in the development of type 2 diabetes between native Japanese and Japanese Americans, Diabetes Res. Clin. Pract., 2002, 57, 131–137 http://dx.doi.org/10.1016/S0168-8227(02)00027-X [CrossRef]

  • [45] Laaksonen D.E., Lindstrom J., Lakka T.A., Eriksson J.G., Niskanen L., Wikstrom K., et al., Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study, Diabetes, 2005, 54, 158–165 http://dx.doi.org/10.2337/diabetes.54.1.158 [CrossRef]

  • [46] Siitonen N., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Association between a deletion/insertion polymorphism in the alpha2B-adrenergic receptor gene and insulin secretion and Type 2 diabetes. The Finnish Diabetes Prevention Study, Diabetologia, 2004, 47, 1416–1424 http://dx.doi.org/10.1007/s00125-004-1462-z [CrossRef]

  • [47] Lindi V.I., Uusitupa M.I., Lindstrom J., Louheranta A., Eriksson J.G., Valle T.T., et al., Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study, Diabetes, 2002, 51, 2581–2586 http://dx.doi.org/10.2337/diabetes.51.8.2581 [CrossRef]

  • [48] Laukkanen O., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2005, 54, 2256–2260 http://dx.doi.org/10.2337/diabetes.54.7.2256 [CrossRef]

  • [49] Salopuro T., Pulkkinen L., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al. Genetic variation in leptin receptor gene is associated with type 2 diabetes and body weight: The Finnish Diabetes Prevention Study, Int. J. Obes. (Lond.), 2005, 29, 1245–1251 http://dx.doi.org/10.1038/sj.ijo.0803024 [CrossRef]

  • [50] Kubaszek A., Pihlajamaki J., Komarovski V., Lindi V., Lindstrom J., Eriksson J., et al., Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2003, 52, 1872–1876 http://dx.doi.org/10.2337/diabetes.52.7.1872 [CrossRef]

  • [51] Mager U., Lindi V., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al., Association of the Leu72Met polymorphism of the ghrelin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study, Diabetes Med., 2006, 23, 685–689 http://dx.doi.org/10.1111/j.1464-5491.2006.01870.x [CrossRef]

  • [52] Florez J.C., Jablonski K.A., Bayley N., Pollin T.I., de Bakker P.I., Shuldiner A.R., et al., TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program, N. Engl. J. Med., 2006, 355, 241–250 http://dx.doi.org/10.1056/NEJMoa062418 [CrossRef]

  • [53] Nelson T.L., Fingerlin T.E., Moss L.K., Barmada M.M., Ferrell R.E., Norris J.M., Association of the peroxisome proliferator-activated receptor gamma gene with type 2 diabetes mellitus varies by physical activity among non-Hispanic whites from Colorado, Metabolism, 2007, 56, 388–393 http://dx.doi.org/10.1016/j.metabol.2006.10.022 [CrossRef]

  • [54] Soriguer F., Morcillo S., Cardona F., Rojo-Martinez G., de la Cruz Almaraz M., Ruiz de Adana Mde L., et al., Pro12Ala polymorphism of the PPARG2 gene is associated with type 2 diabetes mellitus and peripheral insulin sensitivity in a population with a high intake of oleic acid, J. Nutr., 2006, 136, 2325–2330

  • [55] Qi L., Meigs J., Manson J.E., Ma J., Hunter D., Rifai N., et al., HFE genetic variability, body iron stores, and the risk of type 2 diabetes in U.S. women, Diabetes, 2005, 54, 3567–3572 http://dx.doi.org/10.2337/diabetes.54.12.3567 [CrossRef]

  • [56] Beulens J.W., Rimm E.B., Hendriks H.F., Hu F.B., Manson J.E., Hunter D.J., et al., Alcohol consumption and type 2 diabetes: influence of genetic variation in alcohol dehydrogenase, Diabetes, 2007, 56, 2388–2394 http://dx.doi.org/10.2337/db07-0181 [CrossRef]

  • [57] Frayling T.M., Genome-wide association studies provide new insights into type 2 diabetes aetiology, Nat. Rev. Genet., 2007, 8, 657–662 http://dx.doi.org/10.1038/nrg2178 [CrossRef]

  • [58] Bermejo J.L., Hemminki K., Gene-environment studies: any advantage over environmental studies? Carcinogenesis, 2007, 28, 1526–1532 http://dx.doi.org/10.1093/carcin/bgm068 [CrossRef]

  • [59] Willett W.C., Balancing life-style and genomics research for disease prevention. Science, 2002, 296, 695–698 http://dx.doi.org/10.1126/science.1071055 [CrossRef]

  • [60] McCarroll S.A., Altshuler D.M., Copy-number variation and association studies of human disease, Nat. Genet., 2007, 39, S37–42 http://dx.doi.org/10.1038/ng2080 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anna Gluba, Jacek Rysz, and Tadeusz Pietrucha
Open Medicine, 2009, Volume 4, Number 1, Page 1

Comments (0)

Please log in or register to comment.