Jump to ContentJump to Main Navigation

Open Medicine

formerly Central European Journal of Medicine

1 Issue per year


IMPACT FACTOR 2014: 0.153
5-year IMPACT FACTOR: 0.183

SCImago Journal Rank (SJR) 2014: 0.135
Source Normalized Impact per Paper (SNIP) 2014: 0.124
Impact per Publication (IPP) 2014: 0.193

Open Access
VolumeIssuePage

Issues

Successful discontinuation of insulin treatment after gestational diabetes is shown to be a case of MODY due to a glucokinase mutation

1Royal Albert Edward Infirmary, Wigan, UK

2Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Wigan, UK

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Medicine. Volume 3, Issue 2, Pages 225–228, ISSN (Online) 2391-5463, DOI: 10.2478/s11536-007-0065-8, April 2008

Publication History

Published Online:
2008-04-09

Abstract

We describe a woman who first presented with gestational diabetes at 26 weeks gestation and was managed with insulin. Following delivery of a healthy baby she had an abnormal OGTT (oral glucose tolerance test) 6 weeks post partum and was managed with diet. In her second pregnancy she was diagnosed with gestational diabetes at 10 weeks and required insulin. Following delivery she was again managed on diet alone. Four years later, during her third pregnancy, she was managed with insulin from the outset. She remained on insulin post partum and for several years. Later her two younger children, aged 11 years and 7 years, were found to have GCK mutation causing MODY (Maturity Onset Diabetes Of the Young) subtype glucokinase. Following this she underwent molecular genetic testing and was also shown to have the GCK mutation. She was gradually taken off insulin and is now managed on diet alone with excellent glycaemic control. Her two children are under regular follow up care and on no medication for diabetes.

Keywords: Gestational diabetes; Maturity onset diabetes of the young; Glycosylated haemoglobin

  • [1] Tattersall R.B., Mild familial diabetes with dominant inheritance, Quart. J. Med., 1974, 43, 339–357

  • [2] Tattersall R.B., Fajans S.S., A difference between the inheritance of classical juvenile-onset and maturityonset type diabetes of young people, Diabetes., 1975, 24(1), 44–53 http://dx.doi.org/10.2337/diabetes.24.1.44 [CrossRef]

  • [3] Froguel P., Velho G., Molecular Genetics of Maturity Onset diabetes of the Young, Trends Endocrinol Metab., 1999, 10(4), 142–146 http://dx.doi.org/10.1016/S1043-2760(98)00134-9 [CrossRef]

  • [4] Hattersley A.T., Turner R.C., Permutt M.A., Patel P., Tanizawa Y., Chiu K.C., et al., Linkage of Type 2 diabetes to the glucokinase gene, Lancet., 1992, 339, 1307–1310 http://dx.doi.org/10.1016/0140-6736(92)91958-B [CrossRef]

  • [5] Fajans S.S., Scope and heterogeneous nature of MODY, Diabetes Care, 1990, 13, 49–64 http://dx.doi.org/10.2337/diacare.13.1.49 [CrossRef]

  • [6] Kousta E., Ellard S., Allen L.I.S., Saker P.J., Huxtable S.J., Hattersley A.T., et al., Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes, Diabet. Med., 2001, 18, 683–684 http://dx.doi.org/10.1046/j.1464-5491.2001.00530.x [CrossRef]

  • [7] Frayling T.M., Evans J.C., Bulman M.P., Pearson E., Allen L., Owen K., et al., Beta cell Genes and Diabetes; Molecular and Clinical Characterisation of Mutations in Transcription Factors, Diabetes., 2001, 50(S1), S94–100 http://dx.doi.org/10.2337/diabetes.50.2007.S94 [CrossRef]

  • [8] Weng J., Ekelund M., Lehto M., Li H., Ekberg G., Frid A., et al., Screening for MODY mutations, GAD antibodies, and type 1 diabetes-associated HLA genotypes in women with gestational diabetes mellitus, Diabetes Care, 2002, 25, 68–71 http://dx.doi.org/10.2337/diacare.25.1.68 [CrossRef]

  • [9] Ræder H., Johansson S., Holm P.I., Haldorsen I.S., Mas E., Sbarra V., et al., Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction, Nature Genet., 2006, 38, 54–62 http://dx.doi.org/10.1038/ng1708 [CrossRef]

  • [10] Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med., 2006, 355, 456–466 http://dx.doi.org/10.1056/NEJMoa055068 [CrossRef]

  • [11] Flanagan S.E., Patch A.M., Mackay D.J., Edghill E.L., Gloyn A.L., Robinson D., et al., Mutations in ATP-sensitive channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood, Diabetes, 2007, 56(7), 1930–1937 http://dx.doi.org/10.2337/db07-0043 [CrossRef] [Web of Science]

  • [12] Froguel P., Vaxillaire M., Sun F., Velho G., Zouali H., Butel M.O., et al., Close linkage of glucokinase locus on chromosome 7p to early-onset noninsulin-dependent diabetes mellitus, Nature., 1992, 356, 162–164 http://dx.doi.org/10.1038/356162a0 [CrossRef]

  • [13] Vits L., Beckers D., Craen M., De Beaufort C., Vanfleteren E., Dahan K., et al, Identification of novel and recurrent glucokinase mutations in Belgian and Luxembourg maturity onset diabetes of the young patients (Letter), Clin. Genet., 2006, 70, 355–359 http://dx.doi.org/10.1111/j.1399-0004.2006.00686.x [CrossRef]

  • [14] Fajans S.S., Bell G.I., Polonsky K.S., Mechanism of disease: molecular mechanism and clinical pathophysiology of maturity onset diabetes of the young, N. Engl. J. Med., 2001, 345, 971–980 http://dx.doi.org/10.1056/NEJMra002168 [CrossRef]

  • [15] Buchanan T.A., Xiang AH., Gestational diabetes mellitus, J. Clin. Invest., 2005, 115, 485–491 http://dx.doi.org/10.1172/JCI200524531 [CrossRef]

  • [16] Saker, P.J., Hattersley A.T., Barrow B., Hammersley MS., McLellan J.A., Lo Y.M.D., et al., High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder-effect in a local population, Diabetologia., 1996, 39, 1325–1328 http://dx.doi.org/10.1007/s001250050577 [CrossRef]

  • [17] Ellard S., Beards F., Allen L.I., Shepherd M., Ballantyne E., Harvey R., et al., A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria, Diabetologia., 2000, 43, 250–253 http://dx.doi.org/10.1007/s001250050038 [CrossRef]

  • [18] Gloyn A.L., Glucokinase (GCK) mutations in hyperand hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy, Hum. Mutat., 2003, 22(5), 353–362 http://dx.doi.org/10.1002/humu.10277 [CrossRef]

Comments (0)

Please log in or register to comment.