Efficient forward second-harmonic generation from planar archimedean nanospirals : Nanophotonics

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Nanophotonics


IMPACT FACTOR 2014: 5.686
Rank 6 out of 86 in category Optics, 15 out of 143 in Applied Physics, 18 out of 79 in Nanoscience & Nanotechnology and 27 out of 259 in Materials Science, Multidisciplinary in the 2014 Thomson Reuters Journal Citation Report/Science Edition

In co-publication with Science Wise Publishing

Open Access

Efficient forward second-harmonic generation from planar archimedean nanospirals

Roderick B. Davidson II1 / Jed I. Ziegler1 / Guillermo Vargas12 / Sergey M. Avanesyan1 / Yu Gong3 / Wayne Hess3 / Richard F. Haglund Jr.1

1Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA

2Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York

3Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

© 2015 Roderick B. Davidson II et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Nanophotonics. Volume 4, Issue 1, ISSN (Online) 2192-8614, DOI: 10.1515/nanoph-2015-0002, May 2015

Publication History

Published Online:
2015-05-21

Abstract:

The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.

Keywords: nonlinear plasmonics; asymmetric nanoparticles; polarization conversion; metasurfaces; near-field enhancement; Archimedean nanospirals

References

  • [1] R. W. Boyd, Nonlinear optics. (Academic press, 2003).

  • [2] A. E. Grigorescu, C. W. Hagen, Nanotechnology 20(29), 292001 (2009). [CrossRef]

  • [3] H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, S. A. Maier, Nano Letters 12(9), 4997-5002 (2012) [CrossRef]

  • [4] R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Opt. Express 19(27), 26866-26871 (2011). [CrossRef]

  • [5] S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109(1), 015502 (2012).

  • [6] G. F. Walsh, L. Dal Negro, Nanoscale 5(17), 7795-7799 (2013). [CrossRef]

  • [7] Y. Zhang, N. K. Grady, C. Ayala-Orozco, N. J. Halas, Nano Letters 11(12), 5519-5523 (2011). [CrossRef]

  • [8] F. Eftekhari, T. J. Davis, Phys. Rev. B 86(7), 075428 (2012). [CrossRef]

  • [9] Y. Gorodetski, A. Drezet, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 110(20), 203906 (2013).

  • [10] V. K. Valev, J. J. Baumberg, C. Sibilia, V. T. Erbiest, AdvancedMaterials 25(18), 2517-2534 (2013).

  • [11] V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq,W. Gillijns, M. Ameloot, V. V. Moshchalkov, T. Verbiest, Nano Letters 9(11), 3945-3948 (2009). [CrossRef]

  • [12] S. N. Volkov, K. Dolgaleva, R.W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, M. Kauranen, Phys. Rev. A 79(4) 043819, (2009). [CrossRef]

  • [13] S. A. Maier, H. A. Atwater, Journal of Applied Physics 98(1) 011101, - (2005). [CrossRef]

  • [14] A. Capretti, G. F.Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, L. Dal Negro, Opt. Express 20(14), 15797-15806 (2012). [CrossRef]

  • [15] H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen, Nano Letters 12(2), 673-677 (2012). [CrossRef]

  • [16] J. I. Ziegler, R. F. Haglund, Nano Letters 10(8), 3013-3018 (2010). [CrossRef]

  • [17] J. I. Ziegler, R. F. Haglund, Plasmonics 8(2), 571-579 (2013). [CrossRef]

  • [18] D. Pestov, V. V. Lozovoy, M. Dantus, Opt. Express 17(16), 14351- 14361 (2009). [CrossRef]

  • [19] A. M. Weiner, Rev. Sci. Instrum. 71(5), 1929-1960 (2000).

  • [20] M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, P. H. Bunton, Phys. Rev. B 73(4) 041401 (2006). [CrossRef]

  • [21] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, ACS Nano 7(7), 6321-6329, (2013). [CrossRef]

  • [22] M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Phys. Rev. X 2(3), 031010 (2012).

  • [23] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J.Coles, N. I. Zheludev, Phys. Rev. Lett. 90(10), 107404 (2003).

  • [24] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Phys. Rev. Lett 95(22), 227401 (2005). [CrossRef]

  • [25] M. Ren, E. Plum, J. Xu, N. I. Zheludev, NatCommun 3, 833 (2012).

  • [26] N. Calander, I. Gryczynski, Z. Gryczynski, Chemical Physics Letters 434(4–6), 326-330 (2007).

  • [27] J. C. Heckel, G. Chumanov, The Journal of Physical Chemistry C 115(15), 7261-7269 (2011). [CrossRef]

  • [28] N. I. Z. Y. S. Kivshar, Nature Materials 11, 7 (2012).

Comments (0)

Please log in or register to comment.