Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 29, 2015

Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

  • Kai Chen , Eunice Sok Ping Leong , Michael Rukavina , Tadaaki Nagao , Yan Jun Liu and Yuebing Zheng
From the journal Nanophotonics

Abstract:

Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

References

Search in Google Scholar

[1] Raether H., Surface plasmons on smooth and rough surfaces and on gratings, Springer, Berlin, Germany, 1988. 10.1007/BFb0048317Search in Google Scholar

[2] Maier S.A., Plasmonics: fundamentals and applications, Springer, New York, 2007. 10.1007/0-387-37825-1Search in Google Scholar

[3] Bozhevolnyi S.I., Plasmonic nanoguides and circuits, Pan Stanford Publishing Pte. Ltd., Singapore, 2009. 10.1142/9789814241335Search in Google Scholar

[4] Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A., Extraordinary optical transmission through subwavelength hole arrays, Nature 1998, 391:667-9. 10.1038/35570Search in Google Scholar

[5] Ozbay E., Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 2006, 311:189-93. 10.1126/science.1114849Search in Google Scholar PubMed

[6] Zayats A.V., Smolyaninov I.I., Maradudin A.A., Nano-optics of surface plasmon polaritons, Phys. Rep. 2005, 408:131-314. 10.1016/j.physrep.2004.11.001Search in Google Scholar

[7] Maier S.A., Kik P.G., Atwater H.A., Meltzer S., Harel E., Koel B.E., Requicha A.A.G., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2003, 2:229-32. 10.1038/nmat852Search in Google Scholar PubMed

[8] Engheta N., Salandrino A., Alù A., Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Phys. Rev. Lett. 2005, 95:095504. 10.1103/PhysRevLett.95.095504Search in Google Scholar PubMed

[9] Engheta N., Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials, Science 2007, 317:1698-702. 10.1126/science.1133268Search in Google Scholar PubMed

[10] Guo X., Qiu M., Bao J.,Wiley B.J., Yang Q., Zhang X.,Ma Y., Yu H., Tong L., Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009, 9:4515-9. 10.1021/nl902860dSearch in Google Scholar PubMed

[11] Sorger V.J., Ye Z., Oulton R.F., Wang Y., Bartal G., Yin X., Zhang X., Experimental demonstration of low-loss opticalwaveguiding at deep subwavelength scales, Nat. Commun. 2011, 2:331. 10.1038/ncomms1315Search in Google Scholar

[12] Geisler P., Razinskas G., Krauss E., Wu X.F., Rewitz C., Tuchscherer P., Goetz S., Huang C.B., Brixner T., Hecht B.,Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits, Phys. Rev. Lett. 2013, 111:183901. 10.1103/PhysRevLett.111.183901Search in Google Scholar

[13] Huang K.C.Y., Seo M.K., Sarmiento T., Huo Y., Harris J.S., Brongersma M.L., Electrically driven subwavelength optical nanocircuits, Nat. Photon. 2014, 8:244-9. 10.1038/nphoton.2014.2Search in Google Scholar

[14] Sharma B., Frontiera R.R., Henry A.I., Ringe E., Van Duyne R.P., SERS: Materials, applications, and the future, Mater. Today 2012, 15:16-25. 10.1016/S1369-7021(12)70017-2Search in Google Scholar

[15] Neubrech F., Pucci A., Cornelius T.W., Karim S., García-Etxarri A., Aizpurua J., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection, Phys. Rev. Lett. 2008, 101:157403. 10.1103/PhysRevLett.101.157403Search in Google Scholar PubMed

[16] Chen K., Adato R., Altug H., Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, ACS Nano 2012, 6:7998-8006. 10.1021/nn3026468Search in Google Scholar PubMed

[17] Atwater H.A., Polman A., Plasmonics for improved photovoltaic devices, Nat. Mater. 2010, 9:205-13. 10.1038/nmat2629Search in Google Scholar PubMed

[18] Aubry A., Lei D.Y., Fernandez-Dominguez A.I., Sonnefraud Y., Maier S.A., Pendry J.B., Plasmonic light-harvesting devices over the whole visible spectrum, Nano Lett. 2010, 10:2574-9. 10.1021/nl101235dSearch in Google Scholar PubMed

[19] Andreussi O., Biancardi A., Corni S., Mennucci B., Plasmoncontrolled light-harvesting: Design rules for biohybrid devices via multiscale modeling, Nano Lett. 2013, 13:4475-84. 10.1021/nl402403vSearch in Google Scholar PubMed

[20] Pendry J.B., Negative refractionmakes a perfect lens, Phys. Rev. Lett. 2000, 85:3966-9. 10.1103/PhysRevLett.85.3966Search in Google Scholar PubMed

[21] Fang N., Lee H., Sun C., Zhang X., Subdiffraction-limited optical imaging with a silver superlens, Science 2005, 308:534-7. 10.1126/science.1108759Search in Google Scholar PubMed

[22] Pendry J.B., Schurig D., Smith D.R., Controlling electromagnetic fields, Science 2006, 312:1780-2. 10.1126/science.1125907Search in Google Scholar PubMed

[23] Smolyaninov I.I., Smolyaninova V.N., Kildishev A.V., Shalaev V.M., Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking, Phys. Rev. Lett. 2009, 102:213901. 10.1103/PhysRevLett.102.213901Search in Google Scholar PubMed

[24] Scholl J., Koh A., Dionne J., Quantumplasmon resonances of individual metallic nanoparticles, Nature 2012, 483:421-7. 10.1038/nature10904Search in Google Scholar PubMed

[25] Ni X., Emani N.K., Kildishev A.V., Boltasseva A., Shalaev V.M., Broadband light bending with plasmonic nanoantennas, Science 2012, 335:427. 10.1126/science.1214686Search in Google Scholar PubMed

[26] Naik G.V., Saha B., Liu J., Saber S.M., Stach E.A., Irudayaraj J.M.K., Sands T.D., Shalaev V.M., Boltassevaa A., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials, Proc. Natl. Acad. Sci. 2014, 111:7546-51. 10.1073/pnas.1319446111Search in Google Scholar PubMed PubMed Central

[27] Oulton R.F., Sorger V.J., Zentgraf T., Ma R.M., Gladden C., Dai L., Bartal G., Zhang X., Plasmon lasers at deep subwavelength scale, Nature 2009, 461:629-32. 10.1038/nature08364Search in Google Scholar PubMed

[28] Ma R.M., Oulton R.F., Sorger V.J., Bartal G., Zhang X., Roomtemperature subdiffraction-limited plasmon laser by total internal reflection, Nat. Mater. 2011, 10:110-3. 10.1038/nmat2919Search in Google Scholar PubMed

[29] Krasavin A.V., Zheludev N.I., Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations, Appl. Phys. Lett. 2004, 84:1416-8. 10.1063/1.1650904Search in Google Scholar

[30] Lopez R., Haynes T.E., Boatner L.A., Feldman L.C., Haglund Jr. R.F., Temperature-controlled surface plasmon resonance in VO2 nanorods, Opt. Lett. 2002, 27:1327-9. 10.1364/OL.27.001327Search in Google Scholar PubMed

[31] MacDonald K.F., Sámson Z.L., Stockman M.I., Zheludev N.I., Ultrafast active plasmonics, Nat. Photon. 2009, 3:55-8. 10.1038/nphoton.2008.249Search in Google Scholar

[32] Liu Y.J., Hao Q.Z., Smalley J.S.T., Liou J., Khoo I.C., Huang T.J., A frequency-addressed plasmonic switch based on dualfrequency liquid crystals, Appl. Phys. Lett. 2010, 97:091101. 10.1063/1.3483156Search in Google Scholar

[33] Chang W.S., Lassiter J.B., Swanglap P., Sobhani H., Khatua S., Nordlander P., Halas N.J., Link S., A plasmonic Fano switch, Nano Lett. 2012, 12:4977-82. 10.1021/nl302610vSearch in Google Scholar PubMed

[34] Dionne J., Diest K., Sweatlock L., Atwater H., PlasMOStor: a metal-oxide-silicon field-effect plasmonic modulator. Nano Lett. 2009, 9:897-902. 10.1021/nl803868kSearch in Google Scholar PubMed

[35] Temnov V.V., Armelles G., Woggon U., Guzatov D., Cebollada A., Garcia-Martin A., Garcia-Martin J.M., Thomay T., Leitenstorfer A., Bratschitsch R., Active magneto-plasmonics in hybrid metal–ferromagnet structures, Nat. Photon. 2010, 4:107-11. 10.1038/nphoton.2009.265Search in Google Scholar

[36] Diest K., Dionne J.A., Spain M., Atwater H.A., Tunable color filters based on metal-insulator-metal resonators, Nano Lett. 2009, 9:2579-83. 10.1021/nl900755bSearch in Google Scholar PubMed

[37] Liu Y.J., Si G.Y., Leong E.S.P., Xiang N., Danner A.J., Teng J.H., Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays, Adv.Mater. 2012, 24:OP131-5. 10.1002/adma.201104440Search in Google Scholar PubMed

[38] Lee K.S., El-Sayed M.A., Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B 2006, 110:19220-5. 10.1021/jp062536ySearch in Google Scholar PubMed

[39] Liu N., Weiss T., Mesch M., Langguth L., Eigenthaler U., Hirscher M., Sönnichsen C., Giessen H., Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett. 2010, 10:1103-7. 10.1021/nl902621dSearch in Google Scholar PubMed

[40] MacDonald K.F., Zheludev N.I., Active plasmonics: current status, Laser Photon. Rev. 2010, 4:562-7. 10.1002/lpor.200900035Search in Google Scholar

[41] Temnov V.V., Ultrafast acousto-magneto-plasmonics, Nat. Photon. 2012, 6:728-36. 10.1038/nphoton.2012.220Search in Google Scholar

[42] Van Duyne R.P., Molecular plasmonics, Science 2004, 306:985- 6. 10.1126/science.1104976Search in Google Scholar PubMed

[43] Zheng Y.B., Yang Y.W., Jensen L., Fang L., Juluri B.K., Flood A.H., Weiss P.S., Stoddart J.F., Huang T.J., Active molecular plasmonics: controlling plasmon resonances with molecular switches, Nano Lett. 2009, 9:819-25. 10.1021/nl803539gSearch in Google Scholar PubMed

[44] Zhao J., Sherry L.J., Schatz G.C., Van Duyne R.P., Molecular plasmonics: Chromophore-plasmon coupling and single-particle nanosensors, IEEE J. Sel. Top. Quant. Electron. 2008, 14:1418- 29. 10.1109/JSTQE.2008.924840Search in Google Scholar

[45] Jiang N., Shao L., Wang J., (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths, Adv. Mater. 2014, 26:3282-9. 10.1002/adma.201305905Search in Google Scholar PubMed

[46] Leroux Y.R., Lacroix J.C., Chane-Ching K.I., Fave C., Félidj N., Lévi G., Aubard J., Krenn J.R., Hohenau A., Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices, J. Am. Chem. Soc. 2005, 127:16022-3. 10.1021/ja054915vSearch in Google Scholar PubMed

[47] Tokareva I., Minko S., Fendler J.H., Hutter E., Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy, J. Am. Chem. Soc. 2004, 126:15950-1. 10.1021/ja044575ySearch in Google Scholar PubMed

[48] Stuart M.A.C., HuckW.T.S., Genzer J.,Müller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater. 2010, 9:101- 13. 10.1038/nmat2614Search in Google Scholar PubMed

[49] Schwartz T., Hutchison J.A., Genet C., Ebbesen T.W., Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett. 2011, 106:196405. 10.1103/PhysRevLett.106.196405Search in Google Scholar PubMed

[50] Pala R.A., Shimizu K.T., Melosh N.A., Brongersma M.L., A nonvolatile plasmonic switch employing photochromic molecules, Nano Lett. 2008, 8:1506-10. 10.1021/nl0808839Search in Google Scholar PubMed

[51] Ashry I., Zhang B., Khalifa M.B., Claderone J.A., Santos W.L., Heflin J.R., Robinson H.D., Xu Y., Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures, Opt. Express 2014, 22:20720-6. 10.1364/OE.22.020720Search in Google Scholar PubMed

[52] Noginov M.A., Zhu G., Belgrave A.M., Bakker R., Shalaev V.M., Narimanov E.E., Stout S., Herz E., Suteewong T., Wiesner U., Demonstration of a spaser-based nanolaser, Nature 2009, 460:1110-2. 10.1038/nature08318Search in Google Scholar PubMed

[53] Suh J.Y., Kim C.H., Zhou W., Huntington M.D., Co D.T., Wasielewski M.R., Odom T.W., Plasmonic bowtie nanolaser arrays, Nano Lett. 2012, 12:5769-74. 10.1021/nl303086rSearch in Google Scholar PubMed

[54] Meng X., Kildishev A.V., Fujita K., Tanaka K., Shalaev V.M., Wavelength-tunable spasing in the visible, Nano Lett. 2013, 13:4106-12 10.1021/nl4015827Search in Google Scholar PubMed

[55] Zayats A.V., Maier S., Active plasmonics and tuneable plasmonic metamaterials, Wiley, 2013. 10.1002/9781118634394Search in Google Scholar

[56] Hill M.T., Gather M.C., Advances in small lasers, Nat. Photon. 2014, 8:908-18. 10.1038/nphoton.2014.239Search in Google Scholar

[57] Dickson W., Wurtz G.A., Evans P.R., Pollard R.J., Zayats A.V., Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal, Nano Lett. 2007, 8:281-6. 10.1021/nl072613gSearch in Google Scholar PubMed

[58] Khatua S., Chang W.S., Swanglap P., Olson J., Link S., Active modulation of nanorod plasmons, Nano Lett. 2011, 11:3797- 802. 10.1021/nl201876rSearch in Google Scholar PubMed

[59] Mitsuishi M., Koishikawa Y., Tanaka H., Sato E., Mikayama T., Matsui J., Miyashita T., Nanoscale actuation of thermoresponsive polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles, Langmuir 2007, 23:7472-4. 10.1021/la701215tSearch in Google Scholar PubMed

[60] Joshi G.K., Smith K.A., Johnson M.A., Sardar R., Temperaturecontrolled reversible localized surface plasmon resoance response of polymer-functionalized gold nanoprisms in the solid state, J. Phys. Chem. C 2013, 117:26228-37. 10.1021/jp409264wSearch in Google Scholar

[61] Li B., Smilgies D.M., Price A.D., Huber D.L., Clem P.G., Fan H., Poly(Nisopropylacrylamide) surfactant-funtionalized responsive silver nanoparticles and superlattices, ACS Nano 2014, 8:4799-804. 10.1021/nn500690hSearch in Google Scholar PubMed PubMed Central

[62] Gehan H., Mangeney C., Aubard J., Lévi G., Hohenau A., Krenn J.R., Lacaze E., Félidj N., Design and optical properties of active polymer-coated plasmonic nanostructures, J. Phys. Chem. Lett. 2011, 2:926-31 . 10.1021/jz200272rSearch in Google Scholar PubMed

[63] Karg M., Pastoriza-Santos I., Pérez-Juste J., Hellweg T., Liz- Marzán L.M., Nanorod-coated PNIPAM microgels: thermoresponsive optical properties, Small 2007, 3:1222-9. 10.1002/smll.200700078Search in Google Scholar PubMed

[64] Gehan H., Fillaud L., Chehimi M.M., Aubard J., Hohenau A., Felidj N., Mangeney C., Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surfaceenhanced Raman scattering, ACS Nano 2010, 4:6491-500. 10.1021/nn101451qSearch in Google Scholar PubMed

[65] Durand-Gasselin C., Sanson N., Lequeux N., Reversible controlled assembly of thermosensitive polymer-coated gold nanoparticles, Langmuir 2011, 27:12329-35. 10.1021/la2023852Search in Google Scholar PubMed

[66] Liu Y., Han X., He L., Yin Y., Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling, Angew. Chem. Int. Ed. 2012, 51:6373-7. 10.1002/anie.201201816Search in Google Scholar PubMed

[67] Zheng Y.B., Kiraly B., Cheunkar S., Huang T.J., Weiss P.S., Incident-angle-modulated molecular plasmonic switches: a case of weak exciton–plasmon coupling, Nano Lett. 2011, 11:2061-5. 10.1021/nl200524bSearch in Google Scholar PubMed

[68] Koenig Jr. G.M., Meli M.V., Park J.S., de Pablo J.J., Abbott N.L., Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals, Chem. Mater. 2007, 19:1053-61. 10.1021/cm062438pSearch in Google Scholar

[69] Kossyrev P.A., Yin A., Cloutier S.G., Cardimona D.A., Huang D., Alsing P.M., Xu J.M., Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix, Nano Lett. 2005, 5:1978-81. 10.1021/nl0513535Search in Google Scholar PubMed

[70] Chu K.C., Chao C.Y., Chen Y.F., Wu Y.C., Chen C.C., Electrically controlled surface plasmon resonance frequency of gold nanorods, Appl. Phys. Lett. 2006, 89:103107. 10.1063/1.2335812Search in Google Scholar

[71] Müller J., Sönnichsen C., von Poschinger H., von Plessen G., Klar T.A., Feldmann J., Electrically controlled light scattering with single metal nanoparticles, Appl. Phys. Lett. 2002, 81:171-3. 10.1063/1.1491003Search in Google Scholar

[72] Evans P.R., Wurtz G.A., Hendren W.R., Atkinson R., Dickson W., Zayats A.V., Pollard R.J., Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal, Appl. Phys. Lett. 2007, 91:043101. 10.1063/1.2759463Search in Google Scholar

[73] Olson J., Swanglap P., Chang W.S., Khatua S., Solis D., Link S., Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons, Phys. Chem. Chem. Phys. 2013, 15:4195-204. 10.1039/C2CP43966BSearch in Google Scholar

[74] Xie J., Zhang X., Peng Z., Wang Z., Wang T., Zhu S., Wang Z., Zhang L., Zhang J., Yang B., Low electric field intensity and thermotropic tuning surface plasmon band shift of gold island film by liquid crystals, J. Phys. Chem. C 2012, 116:2720-7. 10.1021/jp2098312Search in Google Scholar

[75] Park S.Y., Stroud D., Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle, Phys. Rev. Lett. 2005, 94:217401. 10.1103/PhysRevLett.94.217401Search in Google Scholar PubMed

[76] De Sio L., Caputo R., Cataldi U., Umeton C., Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in selforganized soft materials, J. Mater. Chem. 2011, 21:18967. 10.1039/c1jm14753fSearch in Google Scholar

[77] Liu Y.J., Leong E.S.P., Wang B., Teng J.H., Optical transmission enhancement and tuning by overlaying liquid crystals on a gold film with patterned nanoholes, Plasmonics 2011, 6:659–64. 10.1007/s11468-011-9248-xSearch in Google Scholar

[78] Si G.Y., Zhao Y.H., Leong E.S.P., Liu Y.J., Liquid-crystal-enabled active plasmonics: a review, Materials 2014, 7:1296–317. 10.3390/ma7021296Search in Google Scholar PubMed PubMed Central

[79] Li H., Xu S., Gu Y., Wang H.L., Ma R., Lombardi J.R., Xu W., Active plasmonic nanoantennas for controlling fluorescence beams, J. Phys. Chem. C 2013, 117:19154-9. 10.1021/jp408201zSearch in Google Scholar

[80] Pratibha R., Park K., Smalyukh I.I., Park W., Tunable optical metamaterial based on liquid crystal-gold nanosphere composite, Opt. Express 2009, 17:19459-69. 10.1364/OE.17.019459Search in Google Scholar PubMed

[81] Buchnev O., Ou J.Y., Kaczmarek M., Zheludev N.I., Fedotov V.A., Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell, Opt. Express 2013, 21:1633-8. 10.1364/OE.21.001633Search in Google Scholar PubMed

[82] Zhao Q., Kang L., Du B., Li B., Zhou J., Tang H., Liang X., Zhang B., Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Appl. Phys. Lett. 2007, 90:011112. 10.1063/1.2430485Search in Google Scholar

[83] Ishii S., Kildishev A.V., Shalaev V.M., Drachev V.P., Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals, Laser Phys. Lett. 2011, 8:828-32. 10.1002/lapl.201110077Search in Google Scholar

[84] Hsiao V.K.S., Zhang Y.B., Juluri B.K., Huang T.J., Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals, Adv. Mater. 2008, 20:3528-32. 10.1002/adma.200800045Search in Google Scholar

[85] Liu Y.J., Zheng Y.B., Shi J., Huang H., Walker T.R., Huang T.J., Optically switchable gratings based on azo-dye-doped, polymerdispersed liquid crystals, Opt. Lett. 2009, 34:2351-3. 10.1364/OL.34.002351Search in Google Scholar

[86] Liu Y.J., Zheng Y.B., Liou J., Chiang I.K., Khoo I.C., Huang T.J., Alloptical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays, J. Phys. Chem. C 2011, 115:7717-22. 10.1021/jp111256uSearch in Google Scholar PubMed PubMed Central

[87] Liu Y.J., Cai Z.Y., Leong E.S.P., Zhao X.S., Teng J.H., Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals, J. Mater. Chem. 2012, 22:7609-13. 10.1039/c2jm16050aSearch in Google Scholar

[88] Liu Y.J., Ding X.Y., Lin S.C.S., Shi J.J., Chiang I.K., Huang T.J., Surface acoustic wave driven light shutters using polymerdispersed liquid crystals, Adv. Mater. 2011, 23:1656-9. 10.1002/adma.201003708Search in Google Scholar PubMed

[89] Cetin A.E., Mertiri A., Huang M., Erramilli S., Altug H., Thermal tuning of surface plasmon polaritons using liquid crystals, Adv. Opt. Mater. 2013, 1:915–20. 10.1002/adom.201300303Search in Google Scholar

[90] Kotsuchibashi Y., Ebara M., Yamamoto K., Aoyagi T., “On–off” switching of dynamically controllable self-assembly formation of double-responsive block copolymers with tunable LCSTs, J. Polym. Sci. A Polym. Chem. 2010, 48:4393-9. 10.1002/pola.24226Search in Google Scholar

[91] Yan L., Zheng Y.B., Zhao F., Li S., Gao X., Xu B., Weiss P.S., Zhao Y., Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphenebased materials, Chem. Soc. Rev. 2012, 41:97-114. 10.1039/C1CS15193BSearch in Google Scholar PubMed

[92] Chen J., Badioli M., Alonso-González, Thongrattanasiri S., Huth F., Osmond J., Spasenović M., Centeno A., Pesquera A., Godgnon P., Elorza A.Z., Camara N., García de Abajo F.J., Hillenbrand R., Koppens F.H.L., Optical nano-imaging of gate-tunable graphene plasmons, Nature 2012, 487:77-81. 10.1038/nature11254Search in Google Scholar PubMed

[93] Fei Z., Rodin A.S., Andreev G.O., Bao W., McLeod A.S., Wagner M., Zhang L.M., Zhao Z., Thiemens M., Dominguez G., Fogler M.M., Castro Net A.H., Lau C.N., Keilmann F., Basov D.N., Gate-tuning of graphene plasmons revealed by infrared nanoimaging, Nature 2012, 487:82-5. 10.1038/nature11253Search in Google Scholar PubMed

[94] Mousavi S.H., Kholmanov I., Alici K.B., Purtseladze D., Arju N., Tatar K., Fozdar D.Y., Suk J.W., Hao Y., Khanikaev A.B., Ruoff R.S., Shvets G., Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 2013, 13:1111-7. 10.1021/nl304476bSearch in Google Scholar PubMed

[95] Li Z., Yu N., Modulation of mid-infrared light using graphenemetal plasmonic antennas, Appl. Phys. Lett. 2013, 102:131108. 10.1063/1.4800931Search in Google Scholar

[96] Emani N.K., Chung T.F., Kildishev A.V., Shalaev V.M., Chen Y.P., Boltasseva A., Electrical modulation of Fano resonance in plasmonic nanostructures using graphene, Nano Lett. 2014, 14:78- 82. 10.1021/nl403253cSearch in Google Scholar PubMed

[97] Dabidian N., Kholmanov I., Khanikaev A.B., Tatar K., Trendafilov S., Mousavi S.H., Magnuson C., Ruoff R.S., Shvets G., Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces, ACS Photon 2015, DOI: 10.1021/ph5003279. 10.1021/ph5003279Search in Google Scholar

[98] Grigorenko A.N., Polini M., Novoselov K.S., Graphene plasmonics, Nat. Photon. 2012, 6:749-58. 10.1038/nphoton.2012.262Search in Google Scholar

[99] García de Abajo F.J., Graphene plasmonics: challenges and opportunities, ACS Photon. 2014, 1:135-52. 10.1021/ph400147ySearch in Google Scholar

[100] Fang Z., Wang Y., Schlather A.E., Liu Z., Ajayan P.M., García de Abajo F.J., Nordlander P., Zhu X., Halas N.J., Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 2014, 14:299-304. 10.1021/nl404042hSearch in Google Scholar PubMed

[101] Niu J., Shin Y.J., Lee Y., Ahn J.H., Yang H., Graphene induced tunability of the surface plasmon resonance, Appl. Phys. Lett. 2012, 100:061116. 10.1063/1.3683534Search in Google Scholar

[102] Gao W., Shi G., Jin Z., Shu J., Zhang Q., Vajtai R., Ajayan P.M., Kono J., Xu Q., Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 2013, 13:3698- 702. 10.1021/nl401591kSearch in Google Scholar PubMed

[103] Kim J., Son H., Cho D.J., Geng B., ReganW., Shi S., Kim K., Zettl A., Shen Y.R., Wang F., Electrical control of optical plasmon resonance with graphene, Nano Lett. 2012, 12:5598-602. 10.1021/nl302656dSearch in Google Scholar PubMed

[104] Emani N.K., Chung T.F., Ni X., Kildishev A.V., Chen Y.P., Boltasseva A., Electrically tunable damping of plasmonic resonances with graphene, Nano Lett. 2012, 12:5202-6. 10.1021/nl302322tSearch in Google Scholar PubMed

[105] Yao Y., Kats M.A., Genevet P., Yu N., Song Y., Kong J., Capasso F., Broad electrical tuning of graphene-loaded plasmonic antennas, Nano Lett. 2013, 13:1257-64. 10.1021/nl3047943Search in Google Scholar PubMed

[106] Luk’yanchuk B., Zheludev N.I., Maier S.A., Halas N.J., Nordlander P., Giessen H., Chong C.T., The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 2010, 9:707-15. 10.1038/nmat2810Search in Google Scholar PubMed

[107] Khanikaev A.B., Wu C., Shvets G., Fano-resonant metamaterials and their applications, Nanophotonics 2013, 2:247-64. 10.1515/nanoph-2013-0009Search in Google Scholar

[108] Liu H.L., Leong E.S.P., Wang Z.L., Si G.Y., Zheng L.J., Liu Y.J., Soci C., Multiple and multipolar Fano resonances in plasmonic nanoring pentamers, Adv. Opt. Mater. 2013, 1:978-83. 10.1002/adom.201300393Search in Google Scholar

[109] Liu H.L., Wang Z.L., Huang J., Liu Y.J., Fan H.J., Zheludev N.I., Soci C., Plasmonic nanoclocks, Nano Lett. 2014, 14:5162-9. 10.1021/nl501997zSearch in Google Scholar PubMed

[110] Zheng Y.B., Payton J.L., Chung C.H., Liu R., Cheunkar S., Pathem B.K., Yang Y., Jensen L., Weiss P.S., Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments, Nano Lett. 2011, 11:3447- 52. 10.1021/nl2019195Search in Google Scholar PubMed

[111] Pathem B.K., Zheng Y.B., Payton J.L., Song T.B., Yu B.C., Tour J.M., Yang Y., Jensen L., Weiss P.S., Effect of tether conductivity on the eflciency of photoisomerization of azobenzenefunctionalized molecules on Au{111}, J. Phys. Chem. Lett. 2012, 3:2388-94. 10.1021/jz300968mSearch in Google Scholar PubMed

[112] Zheng Y.B., Payton J.L., Song T.B., Pathem B.K., Zhao Y., Ma H., Yang Y., Jensen L., Jen A.K.Y., Weiss P.S., Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates, Nano Lett. 2012, 12:5362-8. 10.1021/nl302750dSearch in Google Scholar PubMed

[113] Zheng Y.B., Pathem B.K., Hohman J.N., Thomas J.C., Kim M., Weiss P.S., Photoresponsive molecules in well-defined nanoscale environments, Adv. Mater. 2013, 25:302-12. 10.1002/adma.201201532Search in Google Scholar PubMed

[114] Pathem B.K., Zheng Y.B., Morton S., Petersen M.A., Zhao Y., Chung C.H., Yang Y., Jensen L., Nielsen M.B., Weiss P.S., Photoreaction of matrix-isolated dihydroazulene-functionalized molecules on Au{111}, Nano Lett. 2013, 13:337-43. 10.1021/nl304102nSearch in Google Scholar PubMed

[115] Pathem B.K., Claridge S.A., Zheng Y.B., Weiss P.S., Molecular switches and motors on surfaces, Annu. Rev. Phys. Chem. 2013, 64:605-30. 10.1146/annurev-physchem-040412-110045Search in Google Scholar PubMed

[116] Joshi G.K., Blodgett K.N.,Muhoberac B.B., Johnson M.A., Smith K.A., Sardar R., Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas, Nano Lett. 2014, 14:532-40. 10.1021/nl403576cSearch in Google Scholar PubMed

[117] Larsson E.M., Syrenova S., Langhammer C., Nanoplasmonic sensing for nanomaterials science, Nanophotonics 2012, 1:249- 66. 10.1515/nanoph-2012-0029Search in Google Scholar

[118] Davis T.J., Gómez D.E., Vernon K.C., Interaction of molecules with localized surface plasmons in metallic nanoparticles, Phys. Rev. B 2010, 81:045432. 10.1103/PhysRevB.81.045432Search in Google Scholar

[119] Antosiewicz T.J., Apell S.P., Claudio V., Käll M., A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion, Opt. Express 2012, 20:524-33. 10.1364/OE.20.000524Search in Google Scholar PubMed

[120] Nusz G.J., Curry A.C., Marinakos S.M., Wax A., Chilkoti A., Rational selection of gold nanorod geometry for label-free plasmonic biosensors, ACS Nano 2009, 3:795-806. 10.1021/nn8006465Search in Google Scholar PubMed PubMed Central

[121] Unger A., Kreiter M., Analyzing the performance of plasmonic resonators for dielectric sensing, J. Phys. Chem. C 2009, 113:12243-51. 10.1021/jp9027047Search in Google Scholar

[122] Zhang W., Martin O.J.F., A universal law for plasmon resonance shift in biosensing, ACS Photon. 2015, 2:144-50. 10.1021/ph500355dSearch in Google Scholar

[123] Dostert K.H., Álvarez M., Koynov K., del Campo A., Butt H.J., Kreiter M., Near field guided chemical nanopatterning, Langmuir 2012, 28:3699-703. 10.1021/la300009aSearch in Google Scholar PubMed

[124] Chen H., Kou X., Yang Z., Ni W., Wang J., Shape- and sizedependent refractive index sensitivity of gold nanoparticles, Langmuir 2008, 24:5233-7. 10.1021/la800305jSearch in Google Scholar PubMed

[125] Maack J., Ahuja R.C., Tachibana H., Resonant and nonresonant investigations of amphiphilic azobenzene derivatives in solution and in monolayers at the air/water interface, J. Phys. Chem. 1995, 99:9210-20. 10.1021/j100022a039Search in Google Scholar

[126] Goulet-Hanssens A., Corkery T.C., Priimagi A., Barrett C.J., Effect of head group size on the photoswitching applications of azobenzene Disperse Red 1 analogues, J. Mater. Chem. C 2014, 2:7505-12. 10.1039/C4TC00996GSearch in Google Scholar

Received: 2014-10-2
Accepted: 2015-5-1
Published Online: 2015-6-29

© 2015 K. Chen et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0007/html
Scroll to top button