Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 30, 2015

Recent Progress on Plasmon-Enhanced Fluorescence

  • Jun Dong , Zhenglong Zhang , Hairong Zheng and Mentao Sun
From the journal Nanophotonics

Abstract

The optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

References

[1] Ritchie R. H., Plasma losses by fast electrons in thin films, Phys Rev 1957, 106, 874. 10.1103/PhysRev.106.874Search in Google Scholar

[2] Pitarke J. M., Silkin V. M., Chulkov E. V., Echenique P. M., Theory of surface plasmons and surface-plasmon polaritons, Rep Prog Phys 2007, 70, 1–80. 10.1088/0034-4885/70/1/R01Search in Google Scholar

[3] Ringe E., Zhang J., Langille M. R., Sohn K., Cobley C., Au L., Xia Y., Mirkin C. A., Huang J., Marks L. D., Van Duyne R. P., Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold Nanocubes, Mater Res Soc Symp. Proc. 2010, 1208, O10–02. Search in Google Scholar

[4] Ringe E., Langille M. R., Sohn K., Zhang J., Huang J., Mirkin C. A., Van Duyne R. P., Marks L. D., Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles, J Phys Chem Lett 2012, 3, 1479–1483. 10.1021/jz300426pSearch in Google Scholar PubMed

[5] Huang Y. Z., Fang Y. R., Zhang Z. L., Zhu L., Sun M. T., Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light: Science & Applications 2014, 3, e199. 10.1038/lsa.2014.80Search in Google Scholar

[6] Fang Y. R., Sun M. T., Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications 2015, 4, e294. 10.1038/lsa.2015.67Search in Google Scholar

[7] Zhang Z. L., Fang Y. R., Wang W. H., Chen L., Sun M. T., Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions, Advanced Science 2015, DOI: 10.1002/advs. 201500215. Search in Google Scholar

[8] Dong J., Wang J. G., Ma F. C., Cheng Y., Zhang H., Zhang Z. L., Recent Progresses in Integrated Nanoplasmonic Devices Based on Propagating Surface Plasmon Polaritons, Plasmonics 2015, 10, 1841-1852. 10.1007/s11468-015-9995-1Search in Google Scholar

[9] Jain P. K., El-Sayed M. A., Surface Plasmon Resonance Sensitivity of Metal Nanostructures: Physical Basis and Universal Scaling in Metal Nanoshells, J Phys Chem C 2007, 111, 17451–4. 10.1021/jp0773177Search in Google Scholar

[10] Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D:Appl Phys 2008, 41, 013001(1-31). 10.1088/0022-3727/41/1/013001Search in Google Scholar

[11] Bauch M., Toma K., Toma M., Zhang Q., Dostalek J., Surface plasmon-enhanced fluorescence biosensors: a review, Plasmonics 2014, 9, 781–799. 10.1007/s11468-013-9660-5Search in Google Scholar PubMed PubMed Central

[12] Caldarola M., Albella P., Cortés E., Rahmani M., Roschuk T., Grinblat G., Oulton R. F., Bragas A. V., Maier S. A., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultralow heat conversion, Nature Communications 2015, 6:7915. 10.1038/ncomms8915Search in Google Scholar PubMed PubMed Central

[13] Moskovits M., Surface-enhanced spectroscopy, Rev Mod Phy 1985, 57, 783–826. 10.1103/RevModPhys.57.783Search in Google Scholar

[14] Sun M. T., Zhang Z. L., Wang P. J., Li Q., Ma F. C., Xu H. X., Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Science & Applications 2013, 2, e112. 10.1038/lsa.2013.68Search in Google Scholar

[15] Ghosh S. K., Pal T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications, Chem Rev 2007, 107, 4797–4862. 10.1021/cr0680282Search in Google Scholar

[16] Xu H. X., Wang X. H., Persson M., Xu H., Käll M., Johansson P., Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces, Phys Rev Lett 2004, 93, 243002(1– 4). 10.1103/PhysRevLett.93.243002Search in Google Scholar

[17] Lantman E. M. V., Deckert-Gaudig T., Mank A. J. G., Deckert V., Weckhuysen B. M., Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy, Nat Nanotechnol 2012, 7, 583–586. 10.1038/nnano.2012.131Search in Google Scholar

[18] Sun M. T., Zhang Z. L., Chen L., Li Q., Sheng S. X., Xu H. X., Song P., Plasmon-Driven Selective Reductions Revealed by Tip-Enhanced Raman Spectroscopy, Adv Mater Interfaces 2014, 1300125(1–6). 10.1002/admi.201300125Search in Google Scholar

[19] Drexhage K. H., Interaction of light with monomolecular dye layers, Prog Opt 1974, 12, 163–232. 10.1016/S0079-6638(08)70266-XSearch in Google Scholar

[20] Höppener C., Novotny L., Exploiting the light-metal interaction for biomolecular sensing and imaging, Quarterly Reviews of Biophysics 2012, 45, 209–255. 10.1017/S0033583512000042Search in Google Scholar PubMed

[21] Chen K, Leong E S P, Rukavina M, Nagao T, Liu Y J, Zheng Y B. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions, Nanophotonics, 2015, 4:186–197. 10.1515/nanoph-2015-0007Search in Google Scholar

[22] Lakowicz J. R., Principles of Fluorescence Spectroscopy, 3rd Edition, Springer-Verlag, New York, 2006. 10.1007/978-0-387-46312-4Search in Google Scholar

[23] Purcell E M. Spontaneous emission probabilities at radio frequencies, Phys Rev 1946, 69, 681. Search in Google Scholar

[24] Galloway C. M., Etchegoin P. G., Le Ru E. C., Ultrafast Nonradiative Decay Rates on Metallic Surfaces by Comparing Surface-Enhanced Raman and Fluorescence Signals of Single Molecules, Phys Rev Lett 2009, 103, 063003. 10.1103/PhysRevLett.103.063003Search in Google Scholar PubMed

[25] Johansson P., Xu H. X., Surface-enhanced Raman scattering and fluorescence near metal nanoparticles, Phys Rev B 2005, 72, 035427. 10.1103/PhysRevB.72.035427Search in Google Scholar

[26] Itoh T., Iga M., Tamaru H., Yoshida K., Biju V., Quantitative evaluation of blinking in surface enhanced resonance scattering and fluorescence by electromagnetic mechanism, J Chem Phys 2012, 136, 024703. 10.1063/1.3675567Search in Google Scholar PubMed

[27] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics, Nature 2003, 424, 824. 10.1038/nature01937Search in Google Scholar PubMed

[28] Wood R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philos Mag 1902, 4, 396. 10.1080/14786440209462857Search in Google Scholar

[29] Ritchie R. H., Arakawa E. T., Hamm R. N., Surface-plasmon resonance effect in grating diffraction, Phys Rev Lett 1968, 21, 1530– 1533. 10.1103/PhysRevLett.21.1530Search in Google Scholar

[30] Cui X. Q., Tawa K., Hori H., Nishii J., Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging, Adv Func Mat 2010, 20, 546. 10.1002/adfm.200901401Search in Google Scholar

[31] Tsuneyasu M., Sasakawa C., Naruishi N., Tanaka Y., Yoshida Y., Tawa K., Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging, J Appl Phys 2014, 53, 06JL05. 10.7567/JJAP.53.06JL05Search in Google Scholar

[32] Jiang Y., Wang H. Y., Wang H., Gao B. R., Hao Y. W., Jin Y., Chen Q. D., Sun H. B., Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films, J Phys Chem C 2011, 115, 12636. 10.1021/jp203530eSearch in Google Scholar

[33] Hao Y.W.,Wang H. Y., Zhang Z. Y., Zhang X. L., Chen Q. D., Sun H. B., Time-Resolved Fluorescence Anisotropy of Surface Plasmon Coupled Emission on Metallic Gratings, J Phys Chem C 2013, 117, 26734–39. 10.1021/jp4084597Search in Google Scholar

[34] Yuk J. S., Guignon E. F., Lynes M. A., Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness, Chem Phys Let 2014, 591, 5–9. 10.1016/j.cplett.2013.10.081Search in Google Scholar PubMed PubMed Central

[35] Zhang Z. Y., Wang H. Y., Du J. L., Zhang X. L., Hao Y. W., Chen Q. D., Sun H. B., Surface Plasmon-Modulated Fluorescence on 2D Metallic Silver Gratings, IEEE Photonics Technology Letters 2015, 27, 821–823. 10.1109/LPT.2015.2392431Search in Google Scholar

[36] Ebbesen T. W., Extraordinary optical transmission through subwavelength hole arrays. Nature(London) 1998, 391, 667–669. 10.1038/35570Search in Google Scholar

[37] Sambles J. R., Bradbery G. W., Yang F. Z., Optical-excitation of surface-plasmons-an introduction, Contemp Phys 1991, 32, 173–183. 10.1080/00107519108211048Search in Google Scholar

[38] Ghaemi H. F., Thio T., Grupp D. E., Ebbesen T. W., Lezec H. J., Surface plasmons enhance optical transmission through subwavelength holes, Phys Rev B 1998, 58, 6779–6782. 10.1103/PhysRevB.58.6779Search in Google Scholar

[39] Strelniker Y. M., Theory of optical transmission through elliptical nanohole arrays, Phys Rev B 2007, 76, 085409(1–6). 10.1103/PhysRevB.76.085409Search in Google Scholar

[40] Chen Y., Munechika K., Ginger D. S., Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles, Nano Lett 2007, 7, 690–696. 10.1021/nl062795zSearch in Google Scholar PubMed

[41] Brolo A. G., Kwok S. C., Mofltt M. G., Gordon R., Riordon J., Kavanagh K. L., Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film, J Am Chem Soc 2005, 127, 14936–14941. 10.1021/ja0548687Search in Google Scholar PubMed

[42] Guo P. F., Wu S., Ren Q. J., Lu J., Chen Z. H., Xiao S. J., Zhu Y. Y., Fluorescence Enhancement by Surface Plasmon Polaritons on Metallic Nanohole Arrays, J Phys Chem Lett 2010, 1, 315–318. 10.1021/jz900119pSearch in Google Scholar

[43] Mazzotta F., Johnson T.W., Dahlin A. B., Shaver J., Oh S. H., Höök F., Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes, ACS Photonics 2015, 2, 256–262. 10.1021/ph500360dSearch in Google Scholar

[44] Im H., Lee S. H., Wittenberg N. J., Johnson T. W., Lindquist N. C., Nagpal P., Norris D. J., Oh S. H., Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing, ACS nano 2011, 5, 6244–6253. 10.1021/nn202013vSearch in Google Scholar PubMed PubMed Central

[45] Poirier-Richard H. P., Couture M., Brulea T., Masson J. F., Metalenhanced fluorescence and FRET on nanohole arrays excited at angled incidence, Analyst 2015, 140, 4792. 10.1039/C4AN02257BSearch in Google Scholar

[46] Wu L., Bai P., Zhou X., Li E. P., Transmission modes in nanoholearraybased plasmonic sensors, IEEE Photonics Journal 2012, 4, 26–33. 10.1109/JPHOT.2011.2177652Search in Google Scholar

[47] Wu L., Zhou X., Bai P., Plasmonic metals for nanohole-array surface plasmon field-enhanced fluorescence spectroscopy biosensing, Plasmonics 2014, 9, 825–833. 10.1007/s11468-014-9667-6Search in Google Scholar

[48] Barik A., Otto L. M., Yoo D., Jose J., Johnson T. W., Oh S. H., Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays, Nano Lett. 2014, 14, 2006–2012. Search in Google Scholar

[49] Sanchez-Gonzalez A., Corni S., Mennucci B., Surface-Enhanced Fluorescence within a Metal Nanoparticle Array:The Role of Solvent and Plasmon Couplings, J Phys Chem C 2011, 115, 5450– 5460. 10.1021/jp111196fSearch in Google Scholar

[50] Usukura E., Shinohara S., Okamoto K., Lim J., Char K., Tamada K., Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets, Appl Phys Lett 2014, 104, 121906(1–3). 10.1063/1.4869560Search in Google Scholar

[51] Dong J., Qu S. X., Zhang Z. L., Liu M. C., Liu G. N., Yan X. Q., Zheng H. R., Surface enhanced fluorescence on three dimensional silver nanostructure substrate, J Appl Phys 2012, 111, 093101. 10.1063/1.4709442Search in Google Scholar

[52] Yang B. J., Lu N., Qi D., Ma R., Tuning the Intensity of Metal- Enhanced Fluorescence by Engineering Silver Nanoparticle Arrays, Small 2010, 6, 1038–1043. 10.1002/smll.200902350Search in Google Scholar PubMed

[53] Qiu T., Jiang J., Zhang W. J., Lang X. Z., Yu X. Q., Chu P. K., High- Sensitivity and Stable Cellular Fluorescence Imaging by Patterned Silver Nanocap Arrays, ACS Appl Mater Interfaces 2010, 2, 2465–2470. 10.1021/am100534hSearch in Google Scholar PubMed

[54] Sugawa K., Tamura T., Tahara H., Yamaguchi D., Akiyama T., Otsuki J., Kusaka Y., Fukuda N., Ushijima H., Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength dependence of Quenching and Enhancement Effects, ACS nano 2013, 7, 9997–10010. 10.1021/nn403925dSearch in Google Scholar PubMed

[55] Xi L., Chen M., Zhao X. M., Zhang Z. L., Xia J. R., Xu H. X., Sun M. T., Visualized method of chemical enhancement mechanism on SERS and TERS, J. Raman Spectrosc. 2014, 45, 533–540. Search in Google Scholar

[56] Yasukuni R., Ouhenia-Ouadahi K., Boubekeur-Lecaque L., Félidj N.,MaureI F., Métivier R., Nakatani K., Aubard J., Grand J., Silica- Coated Gold Nanorod Arrays for Nanoplasmonics Devices, Langmuir 2013, 29, 12633–12637. 10.1021/la402810eSearch in Google Scholar

[57] Huang Q., Huang Z., Meng G., Fu Y., Lakowicz J. R., Plasmonic nanorod arrays for enhancementof single-molecule detection, Chem Commun 2013, 49, 11743–11745. 10.1039/c3cc42629gSearch in Google Scholar

[58] Singh D. P., Kumar S., Singh J. P., Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition, RSC Adv. 2015, 5, 31341– 31346. Search in Google Scholar

[59] Seal K., Sarychev A. K., Noh H., Genov D. A., Yamilov A., Shalaev V. M., Ying Z. C., Cao H., Near-Field Intensity Correlations in Semicontinuous Metal-Dielectric Films, Phys Rev Lett 2005, 94, 226101. 10.1103/PhysRevLett.94.226101Search in Google Scholar

[60] Shalaev V. M., Nonlinear Optics of Random Media, Springer, Berlin, 2000. 10.1007/BFb0109599Search in Google Scholar

[61] Sarychev A. K., Shalaev V. M., Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites, Phys Rep 2000, 335, 275–371. 10.1016/S0370-1573(99)00118-0Search in Google Scholar

[62] Bozhevolnyi S. I., Markel V. A., Coello V., Kim W., Shalaev V. M., Direct observation of localized dipolar excitations on rough nanostructured surfaces, Phys Rev B 1998, 58, 11441–11448. 10.1103/PhysRevB.58.11441Search in Google Scholar

[63] Weitz D. A., Garoff S., Hanson C. D., Gramila T. J., Gersten J. I., Fluorescent lifetimes of molecules on silver-island films, Opt Lett 1982, 7, 89–91. 10.1364/OL.7.000089Search in Google Scholar

[64] Zhang Y. X., Aslan K., Previte M. J. R., Geddes C. D., Metalenhanced fluorescence from copper substrates, Appl Phys Lett 2007, 90, 173116(1–3). 10.1063/1.2732185Search in Google Scholar

[65] Szalkowski M., Ashraf K. U., Lokstein H.,Mackowski S., Cogdell R. J., Kowalska D., Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules, Photosynth Res 2015, DOI:10.1007/s11120-015-0178-x 10.1007/s11120-015-0178-xSearch in Google Scholar PubMed

[66] Mishra H., Zhang Y. X., Geddes C. D., Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film, Dyes and Pigments 2011, 91, 225–230. 10.1016/j.dyepig.2011.03.005Search in Google Scholar

[67] Shalaev V. M., Poliakov E. Y., Markel V. A., Small-particle composites. II. Nonlinear optical properties, Phys Rev B 1996, 53, 2437–2449 and reference therein. 10.1103/PhysRevB.53.2437Search in Google Scholar

[68] Karpov S. V., Gerasimov V. S., Isaev I. L., Markel V. A., Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring, J Chem Phys 2006, 125, 111101–04. 10.1063/1.2229202Search in Google Scholar PubMed

[69] Geddes C. D., Parfenov A., Roll D., Gryczynski I., Malicka J., Lakowicz J. R., Silver Fractal-like Structures for Metal- Enhanced Fluorescence: Enhanced Fluorescence Intensities and Increased Probe Photostabilities, J Fluoresc 2003, 13, 267– 276. 10.1023/A:1025046101335Search in Google Scholar

[70] Shtoyko T., Matveeva E. G., Chang I. F., Gryczynski Z., Goldys E., Gryczynski I., Enhanced FluorescentImmunoassays on Silver Fractal-like Structures, Anal Chem 2008, 80, 1962–1966. 10.1021/ac7019915Search in Google Scholar PubMed PubMed Central

[71] Dong J., Li X. Q., Zheng H. R., Yan X. Q., Sun Y., Zhang Z. L., Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles, Appl Opt 2011, 50, G123–126. 10.1364/AO.50.00G123Search in Google Scholar PubMed

[72] Dong J., Qu S. X., Zheng H. R., Zhang Z. L., Li J. N., Huo Y. P., Li G. A., Simultaneous PEF and SERRS from silver fractal-like nanostructure, Sensors and Actuators B: Chemical 2014, 191, 595–599. 10.1016/j.snb.2013.09.088Search in Google Scholar

[73] Gu C., Zhang T., Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces, Langmuir 2006, 24, 12010–12016. 10.1021/la802354nSearch in Google Scholar PubMed

[74] Dong J., Zheng H. R., Yan X. Q., Sun Y., Zhang Z. L., Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence, Appl Phys Lett 2012, 100, 051112(1–3). 10.1063/1.3681420Search in Google Scholar

[75] Ma N., Tang F.,Wang X. Y., He F., Li L. D., Tunable Metal-Enhanced Fluorescence by Stimuli-Responsive Polyelectrolyte Interlayer Films, Macromol Rapid Commun. 2011, 32, 587–589. Search in Google Scholar

[76] Dulkeith E., Morteani A. C., Niedereichholz T., Klar T. A., Feldmann J., Levi S. A., Van Veggel F. C. J. M., Reinhoudt D. N., Möller M., Gittins D. I., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects, Phys Rev Lett 2002, 89, 203002(1–4). 10.1103/PhysRevLett.89.203002Search in Google Scholar PubMed

[77] Xie F., Baker M. S., Goldys E. M., Homogeneous Silver-Coated Nanoparticle Substrates for Enhanced Fluorescence Detection, J Phys Chem B 2006, 110, 23085–23091. 10.1021/jp062170pSearch in Google Scholar PubMed

[78] Aslan K., Holley P., Geddes C. D., Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates, J Mater Chem 2006, 16, 2846–2852. 10.1039/b604650aSearch in Google Scholar

[79] Xu S., Cao Y., Zhou J., Wang X. N., Wang X., Xu W. Q., Plasmonic enhancement of fluorescence on silver nanoparticle films, Nanotechnology 2011, 22, 275715. 10.1088/0957-4484/22/27/275715Search in Google Scholar PubMed

[80] Cao S. H., Cai W. P., Liu Q., Xie K. X., Weng Y. H., Li Y. Q., Turning on fluorescence by plasmonic assembly with large tunable spacing: a new observation and its biosensing application, Chem Commun 2014, 50, 518-520. 10.1039/C3CC46392CSearch in Google Scholar PubMed

[81] Bek A., Jansen R., Ringler M., Mayilo S., Klar T. A., Feldmann J., Nano Lett 2008, 8, 485. 10.1021/nl072602nSearch in Google Scholar PubMed

[82] Zhang Z. L., Yang P. F., Xu H. X., Zheng H. R., Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers, J Appl Phys 2013, 113,033102(1–3). 10.1063/1.4776227Search in Google Scholar

[83] Zhang Y. X., Dragan A., Geddes C. D., Wavelength Dependence of Metal-Enhanced Fluorescence, J. Phys Chem C 2009, 113, 12095–12100. 10.1021/jp9005668Search in Google Scholar

[84] Zhang X., Marocico C. A., Lunz M., Gerard V. A., Gun’ko Y. K., Experimental and theoretical investigation of the distance dependence of localized surface Plasmon coupled Förster resonance energy transfer, ACS Nano 2014, 8, 1273–1283. 10.1021/nn406530mSearch in Google Scholar PubMed

[85] Bujak Ł., Olejnik M., Brotosudarmo T. H. P., Schmidt M. K., Czechowski N., Piatkowski D., Aizpurua J., Cogdell R. J., Heisse W., Mackowski S., Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods, Phys Chem Chem Phys 2014, 16, 9015– 9022. 10.1039/c3cp54364aSearch in Google Scholar PubMed

[86] Reineck P., Gómez D., Ng S. H., Karg M., Bell T., Mulvaney P., Bach U., Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 Core-Shell Nanoparticles, ACS Nano 2013, 7(8), 6636–6648. 10.1021/nn401775eSearch in Google Scholar PubMed

[87] Cheng D., Xu Q. H., Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles, Chem Commun 2007, 3, 248–250. 10.1039/B612401ASearch in Google Scholar

[88] Guerrero A. R., Aroca R. F., Surface-Enhanced Fluorescence with Shell-Isolated Nanoparticles(SHINEF), Angew Chem Int Ed 2011, 50, 665–668. 10.1002/anie.201004806Search in Google Scholar

[89] Abadeer N. S., Brennan M. R., Wilson W. L., Murphy C. J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods, ACS Nano 2014, 8, 8392–8406. 10.1021/nn502887jSearch in Google Scholar

[90] Wang L., Song Q. W., Liu Q. L., He D. C., Ouyang J., Plasmon- Enhanced Fluorescence-Based Core–Shell Gold Nanorods as a near-IR Fluorescent Turn-On Sensor for the Highly Sensitive Detection of Pyrophosphate in Aqueous Solution, Adv FunctMater 2015, DOI: 10.1002/adfm.201503326 10.1002/adfm.201503326Search in Google Scholar

[91] Stöckle R. M., Suh Y. D., Deckert V., Zenobi R., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem Phys Lett 2000, 318, 131–136. 10.1016/S0009-2614(99)01451-7Search in Google Scholar

[92] Zhang R., Zhang Y., Dong Z. C., Jiang S., Zhang C., Chen L. G., Zhang L., Liao Y., Aizpurua J., Luo Y., Yang J. L., Hou J. G., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 2013, 498, 82–86. 10.1038/nature12151Search in Google Scholar PubMed

[93] Bailo E., Deckert V., Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method, Angew Chem Int Edit 2008, 47, 1658–1661. 10.1002/anie.200704054Search in Google Scholar PubMed

[94] Sun M. T., Zhang Z. L., Zheng H. R., Xu H. X., In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Sci. Rep. 2012, 2, 647. Search in Google Scholar

[95] Sun M. T., Zhang Z. L., Chen L., Sheng S. X., Xu H. X., Plasmonic Gradient Effects on High Vacuum Tip-Enhanced Raman Spectroscopy, Adv Optical Mater. 2014, 2, 74–80. Search in Google Scholar

[96] Snchez E. J., Novotny L., Xie X. S., Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips, Phys Rev Lett 1999, 82, 4014–4017. 10.1103/PhysRevLett.82.4014Search in Google Scholar

[97] Betzig E., Trautman J. K., Near-Field Optics – Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit, Science 1992, 257, 189–195. 10.1126/science.257.5067.189Search in Google Scholar PubMed

[98] Gerton J. M., Wade L. A., Lessard G. A., Ma Z., Quake S. R., Tipenhanced fluorescence microscopy at 10 nanometer resolution, Phys Rev Lett 2004, 93, 180801. 10.1103/PhysRevLett.93.180801Search in Google Scholar PubMed

[99] Frey H. G., Witt S., Felderer K., Guckenberger R., High- Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip, Phys Rev Lett 2004, 93, 200801. 10.1103/PhysRevLett.93.200801Search in Google Scholar PubMed

[100] Dong Z. C., Guo X. L., Trifonov A. S., Dorozhkin P. S., Miki K., Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope, Phys Rev Lett 2004, 92, 086801. 10.1103/PhysRevLett.92.086801Search in Google Scholar PubMed

[101] Mauser N., Hartschuh A., Tip-enhanced near-field optical microscopy, Chem Soc Rev 2014, 43, 1248–1262. 10.1039/C3CS60258CSearch in Google Scholar PubMed PubMed Central

[102] Bharadwaj P., Deutsch B., Novotny L., Optical Antennas. Adv Opt Photonics 2009, 1, 438–483. 10.1364/AOP.1.000438Search in Google Scholar

[103] Anger P., Bharadwaj P., Novotny L., Enhancement and Quenching of Single-Molecule Fluorescence, Phys Rev Lett 2006, 96, 113002. 10.1103/PhysRevLett.96.113002Search in Google Scholar PubMed

[104] Hartschuh A., Beversluis M. R., Bouhelier A., Novotny L., Tipenhanced optical spectroscopy, Phil Trans R Soc Lond A 2004, 362, 807–819. 10.1098/rsta.2003.1348Search in Google Scholar PubMed

[105] Ma Z. Y., Gerton J. M., Wade L. A., Quake S. R., Fluorescence near-field microscopy of DNA at sub-10 nm resolution, Phys Rev Lett. 2006, 97, 260801. Search in Google Scholar

[106] Frey H. G., Paskarbeit J., Anselmetti D., Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment, Appl Phys Lett 2009, 94, 241116. 10.1063/1.3155190Search in Google Scholar

[107] Hayazawa N., Furusawa K., Taguchi A., Abe H., Kawata S., Tipenhanced two-photon excited fluorescence microscopy with a silicon tip, Appl Phys Lett 2009, 94, 193112. 10.1063/1.3138132Search in Google Scholar

[108] Hu D., Micic M., Klymyshyn N., Suh Y. D., Lu H. P., Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip enhanced near field fluorescence lifetime microscopy, Rev Sci Instrum2003, 74, 3347– 3355. 10.1063/1.1581359Search in Google Scholar

[109] Krug J. T., Sánchez E. J., Xie X. S., Fluorescence quenching in tip-enhanced nonlinear optical microscopy, Appl Phys Lett 2005, 87, 183101(1–3). 10.1063/1.2115073Search in Google Scholar

[110] Chiang N., Jiang N., Chulhai D. V., Pozzi E. A., Hersam M. C., Jensen L., Seideman T., Van Duyne R. P., Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy, Nano Lett 2015, 15(6), 4114–4120. 10.1021/acs.nanolett.5b01225Search in Google Scholar PubMed

[111] Zhang H., Li Y. J., Ivanov I. A., Qu Y. Q., Huang Y., Duan X. F., Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells, Angew Chem Int Ed 2011, 49, 2865–2868. 10.1002/anie.200905805Search in Google Scholar PubMed PubMed Central

[112] Sudheendra L., Ortalan V., Dey S., Browning N. D., Kennedy I. M., Plasmonic Enhanced Emissions from Cubic NaYF4:Yb:Er/Tm Nanophosphors, Chem Mater 2011, 23, 2987–2993. 10.1021/cm2006814Search in Google Scholar PubMed PubMed Central

[113] Lee K. T., Park J. H., Kwon S. J., et.al., Simultaneous Enhancement of Upconversion and Downshifting Luminescence via Plasmonic Structure, Nano Lett 2015, 15, 2491–2497. 10.1021/nl5049803Search in Google Scholar PubMed

[114] Lin J. H., Liou H. Y., Wang C. D., Tseng C. Y., Lee C. T., Ting C. C., Kan H. C., Hsu C. C., Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate, ACS Photonics 2015, 2, 530–536. 10.1021/ph500427kSearch in Google Scholar

[115] Saboktakin M., Ye X., Chettiar U. K., Engheta N., Murray C. B., Kagan C. R., Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays, ACS Nano 2013, 7, 7186–7192. 10.1021/nn402598eSearch in Google Scholar PubMed

[116] Wang P. H., Li Z. Q., Salcedo W. J., Sun Z., Huang S. M., Brolo A. G., Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods, Phys Chem Chem Phys 2015, 17, 16170–16177. 10.1039/C5CP02249ESearch in Google Scholar PubMed

[117] Sun Q. C.,Mundoor H., Ribot J. C., Singh V., Smalyukh I. I., Nagpal P., Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals, Nano Lett 2014, 14, 101–106. 10.1021/nl403383wSearch in Google Scholar PubMed

[118] He E. J., Moskovits M., Dong J., Gao W., Han Q. Y., Zheng H. R., Liu N., Luminescence Enhancement Mechanism of Lanthanide- Doped Hybrid Nanostructures Decorated by Silver Nanocrystals, Plasmonics 2015, 10, 357–368. 10.1007/s11468-014-9817-xSearch in Google Scholar

[119] Feng A. L., You M. L., Tian L., Singamaneni S., Liu M., Duan Z., Lu T. J., Xu F., Lin M., Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using polyelectrolyte Multilayers as Tunable Spacers, Scientific Reports 2014, 5, 7779. 10.1038/srep07779Search in Google Scholar PubMed PubMed Central

[120] Schietinger S., Aichele T., Wang H. Q., Nann T., Benson O., Plasmon-Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Codoped Nanocrystals, Nano Lett 2010, 10, 134–138. 10.1021/nl903046rSearch in Google Scholar PubMed

[121] Mauser N., Piatkowski D.,Mancabelli T., Nyk M.,Mackowski S., Hartschuh A., Tip Enhancement of Upconversion Photoluminescence from Rare Earth Ion Doped Nanocrystals, ACS Nano 2015, 9, 3617–3626. 10.1021/nn504993eSearch in Google Scholar PubMed

Received: 2015-9-20
Accepted: 2015-11-13
Published Online: 2015-12-30

© 2015 J. Dong et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0028/html
Scroll to top button