Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 11, 2016

Advancing colloidal quantum dot photovoltaic technology

  • Yan Cheng , Ebuka S. Arinze , Nathan Palmquist and Susanna M. Thon EMAIL logo
From the journal Nanophotonics

Abstract

Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

References

[1] Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354-7.10.1038/370354a0Search in Google Scholar

[2] Tessler N, Medvedev V, Kazes M, Kan S, Banin U. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science 2002, 295, 1506-8.10.1126/science.1068153Search in Google Scholar PubMed

[3] Caruge JM, Halpert JE, Wood V, Bulović V, Bawendi MG. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics 2008, 2, 247-50.10.1038/nphoton.2008.34Search in Google Scholar

[4] Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 2013, 7, 13-23.10.1038/nphoton.2012.328Search in Google Scholar

[5] Sun Q, Wang YA, Li LS, et al. Bright, multicoloured lightemitting diodes based on quantum dots. Nat Photonics 2007, 1, 717-22.10.1038/nphoton.2007.226Search in Google Scholar

[6] Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180-3.10.1038/nature04855Search in Google Scholar PubMed

[7] Konstantatos G, Sargent EH. Colloidal quantum dot photodetectors. Infrared Phys Technol 2011, 54, 278-82.10.1016/j.infrared.2010.12.029Search in Google Scholar

[8] Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation. Science 2009, 324, 1542-4.10.1126/science.1173812Search in Google Scholar PubMed

[9] Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat Nanotechnol 2009, 4, 40-4.10.1038/nnano.2008.313Search in Google Scholar PubMed

[10] Alivisatos AP, Gu W, Larabell C. Quantum Dots as Cellular Probes. Annu Rev Biomed Eng 2005, 7, 55-76.10.1146/annurev.bioeng.7.060804.100432Search in Google Scholar PubMed

[11] Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001, 19, 631-5.10.1038/90228Search in Google Scholar

[12] Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002, 13, 40-6.10.1016/S0958-1669(02)00282-3Search in Google Scholar

[13] Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003, 2, 630-8.10.1038/nmat961Search in Google Scholar PubMed

[14] Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with Luminescent Semiconductor Quantum Dots. Sensors 2006, 6, 925-53.10.3390/s6080925Search in Google Scholar

[15] Barkhouse DAR, Debnath R, Kramer IJ, et al. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics. Adv Mater 2011, 23, 3134-8.10.1002/adma.201101065Search in Google Scholar PubMed

[16] Tang J, Kemp KW, Hoogland S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 2011, 10, 765-71.10.1038/nmat3118Search in Google Scholar PubMed

[17] Ip AH, Thon SM, Hoogland S, et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 2012, 7, 577-82.10.1038/nnano.2012.127Search in Google Scholar PubMed

[18] Koleilat GI, Levina L, Shukla H, et al. Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots. ACS Nano 2008, 2, 833-40.10.1021/nn800093vSearch in Google Scholar PubMed

[19] Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulović V. Pathways for solar photovoltaics. Energy Environ Sci 2015, 8, 1200-19.10.1039/C4EE04073BSearch in Google Scholar

[20] Wadia C, Alivisatos AP, Kammen DM. Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment. Environ Sci Technol 2009, 43, 2072-7.10.1021/es8019534Search in Google Scholar PubMed

[21] Kramer IJ, Minor JC, Moreno-Bautista G, et al. Efficient Spray- Coated Colloidal Quantum Dot Solar Cells. Adv Mater 2015, 27, 116-21.10.1002/adma.201403281Search in Google Scholar PubMed

[22] Sargent EH. Colloidal quantum dot solar cells. Nat Photonics 2012, 6, 133-5.10.1038/nphoton.2012.33Search in Google Scholar

[23] Chuang C-HM, Brown PR, Bulović V, Bawendi MG. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 2014, 13, 796-801.10.1038/nmat3984Search in Google Scholar PubMed PubMed Central

[24] Loiudice A, Rizzo A, Corricelli M, et al. Room-temperature treatments for all-inorganic nanocrystal solar cell devices. Thin Solid Films 2014, 560, 44-8.10.1016/j.tsf.2013.10.156Search in Google Scholar

[25] Ning Z, Voznyy O, Pan J, et al. Air-stable n-type colloidal quantum dot solids. Nat Mater 2014, 13, 822-8.10.1038/nmat4007Search in Google Scholar PubMed

[26] Zhang J, Gao J, Church CP, et al. PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere. Nano Lett 2014, 14, 6010-5.10.1021/nl503085vSearch in Google Scholar PubMed

[27] Tang J, Brzozowski L, Barkhouse DAR, et al. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light- Stability. ACS Nano 2010, 4, 869-78.10.1021/nn901564qSearch in Google Scholar PubMed

[28] Liu H, Li M, Voznyy O, et al. Physically Flexible, Rapid- Response Gas Sensor Based on Colloidal Quantum Dot Solids. Adv Mater 2014, 26, 2718-24.10.1002/adma.201304366Search in Google Scholar PubMed

[29] He J, Luo M, Hu L, et al. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J Alloys Compd 2014, 596, 73-8. 10.1016/j.jallcom.2014.01.194Search in Google Scholar

[30] Jang J, Shim HC, Ju Y, et al. All-solution-processed PbS quantum dot solar modules. Nanoscale 2015, 7, 8829-34.10.1039/C5NR01508ASearch in Google Scholar

[31] Chalao Wongsaeng, Singjai P. Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template. Appl Phys Lett 2014, 104, 1-5.10.1063/1.4871471Search in Google Scholar

[32] Kramer IJ, Moreno-Bautista G, Minor JC, Kopilovic D, Sargent EH. Colloidal quantum dot solar cells on curved and flexible substrates. Appl Phys Lett 2014, 105, 163902.10.1063/1.4898635Search in Google Scholar

[33] Jiang Z, You G, Wang L, et al. Solution-processed highperformance colloidal quantum dot tandem photodetectors on flexible substrates. J Appl Phys 2014, 116, 084303.10.1063/1.4893897Search in Google Scholar

[34] Loiudice A, Rizzo A, Grancini G, et al. Fabrication of flexible all-inorganic nanocrystal solar cells by room-temperature processing. Energy Environ Sci 2013, 6, 1565-72.10.1039/c3ee23928dSearch in Google Scholar

[35] Tan Z, Xu J, Zhang C, et al. Colloidal nanocrystal-based lightemitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. J Appl Phys 2009, 105, N.PAG.10.1063/1.3074335Search in Google Scholar

[36] Kalowekamo J, Baker E. Estimating the manufacturing cost of purely organic solar cells. Sol Energy 2009, 83, 1224-31.10.1016/j.solener.2009.02.003Search in Google Scholar

[37] Aroutiounian VM, Petrosyan S, Khachatryan A, Touryan KJ. Quantum dot solar cells. vol. 4458, 2001, p. 38-45.Search in Google Scholar

[38] Klimov VI. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl Phys Lett 2006, 89, 123118.10.1063/1.2356314Search in Google Scholar

[39] Baskoutas S, Terzis AF. Size-dependent band gap of colloidal quantum dots. J Appl Phys 2006, 99, 013708.10.1063/1.2158502Search in Google Scholar

[40] Shockley W, Queisser HJ. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J Appl Phys 1961, 32, 510-9.10.1063/1.1736034Search in Google Scholar

[41] Wang X, Koleilat GI, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat Photonics 2011, 5, 480-4.10.1038/nphoton.2011.123Search in Google Scholar

[42] Brown AS, Green MA. Detailed balance limit for the series constrained two terminal tandem solar cell. Phys E Low- Dimens Syst Nanostructures 2002, 14, 96-100.10.1016/S1386-9477(02)00364-8Search in Google Scholar

[43] Santra PK, Kamat PV. Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. J Am Chem Soc 2013, 135, 877-85.10.1021/ja310737mSearch in Google Scholar PubMed

[44] Choi JJ, Wenger WN, Hoffman RS, et al. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells. Adv Mater 2011, 23, 3144-8.10.1002/adma.201100723Search in Google Scholar PubMed

[45] Kramer IJ, Levina L, Debnath R, Zhitomirsky D, Sargent EH. Solar Cells Using Quantum Funnels. Nano Lett 2011, 11, 3701-6.10.1021/nl201682hSearch in Google Scholar PubMed

[46] Tang J, Liu H, Zhitomirsky D, et al. Quantum Junction Solar Cells. Nano Lett 2012, 12, 4889-94.10.1021/nl302436rSearch in Google Scholar PubMed

[47] Freundlich A, Alemu A. Multi quantum well multijunction solar cell for space applications. Phys Status Solidi C 2005, 2, 2978-81.10.1002/pssc.200460720Search in Google Scholar

[48] H. Sargent E. Infrared Quantum Dots. Adv Mater 2005, 17, 515-22.10.1002/adma.200401552Search in Google Scholar

[49] Azizi SN, Chaichi MJ, Shakeri P, Bekhradnia A. Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. J Lumin 2013, 144, 34-40.10.1016/j.jlumin.2013.05.054Search in Google Scholar

[50] Trevisan R, Rodenas P, Gonzalez-Pedro V, et al. Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based “Quasi-Artificial Leaf.” J Phys Chem Lett 2013, 4, 141-6.10.1021/jz301890mSearch in Google Scholar PubMed

[51] Choudhury KR, Sahoo Y, Ohulchanskyy TY, Prasad PN. Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites. Appl Phys Lett 2005, 87, 073110.10.1063/1.2011768Search in Google Scholar

[52] McDonald SA, Konstantatos G, Shiguo Zhang, et al. Solutionprocessed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 2005, 4, 138-42.10.1038/nmat1299Search in Google Scholar PubMed

[53] Wang H, Li Z, Fu C, et al. Solution-Processed PbSe Colloidal Quantum Dot-Based Near-Infrared Photodetector. IEEE Photonics Technol Lett 2015, 27, 612-5.10.1109/LPT.2014.2386342Search in Google Scholar

[54] Lin K-F, Cheng H-M, Hsu H-C, Lin L-J, Hsieh W-F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem Phys Lett 2005, 409, 208-11.10.1016/j.cplett.2005.05.027Search in Google Scholar

[55] Fonoberov VA, Pokatilov EP, Balandin AA. Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects. Phys Rev B 2002, 66, 085310.10.1103/PhysRevB.66.085310Search in Google Scholar

[56] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. J Am Chem Soc 2008, 130, 4007-15.10.1021/ja0782706Search in Google Scholar PubMed

[57] Choi H, Ko J-H, Kim Y-H, Jeong S. Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size- Dependent Stability. J Am Chem Soc 2013, 135, 5278-81.10.1021/ja400948tSearch in Google Scholar PubMed

[58] Hines MA, Scholes GD. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post- Synthesis Self-Narrowing of the Particle Size Distribution. Adv Mater 2003, 15, 1844-9.10.1002/adma.200305395Search in Google Scholar

[59] Owen JS, Chan EM, Liu H, Alivisatos AP. Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals. J Am Chem Soc 2010, 132, 18206-13.10.1021/ja106777jSearch in Google Scholar PubMed

[60] Ellingson RJ, Beard MC, Johnson JC, et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Lett 2005, 5, 865-71.10.1021/nl0502672Search in Google Scholar PubMed

[61] Nozik AJ. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 2008, 457, 3-11.10.1016/j.cplett.2008.03.094Search in Google Scholar

[62] Ekuma CE, Singh DJ, Moreno J, Jarrell M. Optical properties of PbTe and PbSe. Phys Rev B 2012, 85, 085205.10.1103/PhysRevB.85.085205Search in Google Scholar

[63] Yeh M-H, Lin L-Y, Lee C-P, et al. High performance CdS quantum-dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode. J Power Sources 2013, 237, 141-8.10.1016/j.jpowsour.2013.02.092Search in Google Scholar

[64] Robel I, Subramanian V, Kuno M, Kamat PV. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J Am Chem Soc 2006, 128, 2385-93.10.1021/ja056494nSearch in Google Scholar PubMed

[65] Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of Monodisperse Spherical Nanocrystals. Angew Chem Int Ed 2007, 46, 4630-60.10.1002/anie.200603148Search in Google Scholar PubMed

[66] Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 1993, 115, 8706-15.10.1021/ja00072a025Search in Google Scholar

[67] Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and Properties of Nanocrystals of Different Shapes. Chem Rev 2005, 105, 1025-102.10.1021/cr030063aSearch in Google Scholar PubMed

[68] Moreels I, Justo Y, De Geyter B, Haustraete K, Martins JC, Hens Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5, 2004-12. 10.1021/nn103050wSearch in Google Scholar PubMed

[69] Kwon SG, Piao Y, Park J, et al. Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. J Am Chem Soc 2007, 129, 12571-84.10.1021/ja074633qSearch in Google Scholar PubMed

[70] Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004, 3, 891-5.10.1038/nmat1251Search in Google Scholar PubMed

[71] Ma W, Swisher SL, Ewers T, et al. Photovoltaic Performance of Ultrasmall PbSe Quantum Dots. ACS Nano 2011, 5, 8140-7.10.1021/nn202786gSearch in Google Scholar PubMed

[72] Zhang J, Gao J, Miller EM, Luther JM, Beard MC. Diffusion- Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells. ACS Nano 2014, 8, 614-22.10.1021/nn405236kSearch in Google Scholar

[73] Yuan M, Kemp KW, Thon SM, et al. High-Performance Quantum-Dot Solids via Elemental Sulfur Synthesis. Adv Mater 2014, 26, 3513-9.10.1002/adma.201305912Search in Google Scholar

[74] McPhail MR, Weiss EA. Role of Organosulfur Compounds in the Growth and Final Surface Chemistry of PbS Quantum Dots. Chem Mater 2014, 26, 3377-84.10.1021/cm4040819Search in Google Scholar

[75] Lipovskii A, Kolobkova E, Petrikov V, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett 1997, 71, 3406-8.10.1063/1.120349Search in Google Scholar

[76] Borrelli NF, Smith DW. Quantum confinement of PbS microcrystals in glass. J Non-Cryst Solids 1994, 180, 25-31.10.1016/0022-3093(94)90393-XSearch in Google Scholar

[77] Yan X, Cui X, Li L. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J Am Chem Soc 2010, 132, 5944-5.10.1021/ja1009376Search in Google Scholar PubMed

[78] Micic OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ. Synthesis and Characterization of InP Quantum Dots. J Phys Chem 1994, 98, 4966-9.10.1021/j100070a004Search in Google Scholar

[79] Nordell KJ, Boatman EM, Lisensky GC. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals. J Chem Educ 2005, 82, 1697.10.1021/ed082p1697Search in Google Scholar

[80] Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl Phys Lett 1996, 69, 1432-4.10.1063/1.117605Search in Google Scholar

[81] Nose K, Omata T, Otsuka-Yao-Matsuo S. Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties. J Phys Chem C 2009, 113, 3455-60.10.1021/jp809398kSearch in Google Scholar

[82] Smith DK, Luther JM, Semonin OE, Nozik AJ, Beard MC. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity. ACS Nano 2011, 5, 183-90.10.1021/nn102878uSearch in Google Scholar PubMed

[83] Deng Z, Yan H, Liu Y. Band Gap Engineering of Quaternary- Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method. J Am Chem Soc 2009, 131, 17744-5.10.1021/ja908408mSearch in Google Scholar PubMed

[84] Wu B-L, Chao H-J, Chen C-P, Yang C-H, Chang J-Y. One-pot synthesis of colloidal Cdx:CuInS2 quaternary quantum dots used as sensitizers in photovoltaic cells. RSC Adv 2015, 5, 36605-13.10.1039/C5RA04275ESearch in Google Scholar

[85] Green M. The nature of quantum dot capping ligands. J Mater Chem 2010, 20, 5797-809.10.1039/c0jm00007hSearch in Google Scholar

[86] Taylor J, Kippeny T, Rosenthal SJ. Surface Stoichiometry of CdSe Nanocrystals Determined by Rutherford Backscattering Spectroscopy. J Clust Sci 2001, 12, 571-82.Search in Google Scholar

[87] Jasieniak J, Mulvaney P. From Cd-Rich to Se-Rich − the Manipulation of CdSe Nanocrystal Surface Stoichiometry. J Am Chem Soc 2007, 129, 2841-8.10.1021/ja066205aSearch in Google Scholar PubMed

[88] Moreels I, Fritzinger B, Martins JC, Hens Z. Surface Chemistry of Colloidal PbSe Nanocrystals. J Am Chem Soc 2008, 130, 15081-6.10.1021/ja803994mSearch in Google Scholar PubMed

[89] Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010, 110, 389-458.10.1021/cr900137kSearch in Google Scholar PubMed

[90] Kovalenko MV, Scheele M, Talapin DV. Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands. Science 2009, 324, 1417-20.10.1126/science.1170524Search in Google Scholar PubMed

[91] Guyot-Sionnest P. Electrical Transport in Colloidal Quantum Dot Films. J Phys Chem Lett 2012, 3, 1169-75.10.1021/jz300048ySearch in Google Scholar PubMed

[92] Zabet-Khosousi A, Dhirani A-A. Charge Transport in Nanoparticle Assemblies. Chem Rev 2008, 108, 4072-124.10.1021/cr0680134Search in Google Scholar PubMed

[93] Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H. Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores. J Am Chem Soc 2005, 127, 3870-8.10.1021/ja044031wSearch in Google Scholar PubMed

[94] Klem EJD, Shukla H, Hinds S, MacNeil DD, Levina L, Sargent EH. Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids. Appl Phys Lett 2008, 92, 212105.10.1063/1.2917800Search in Google Scholar

[95] Giansante C, Carbone L, Giannini C, et al. Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics. J Phys Chem C 2013, 117, 13305-17.10.1021/jp403066qSearch in Google Scholar

[96] Barkhouse DAR, Pattantyus-Abraham AG, Levina L, Sargent EH. Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency. ACS Nano 2008, 2, 2356-62.10.1021/nn800471cSearch in Google Scholar PubMed

[97] Greaney MJ, Couderc E, Zhao J, et al. Controlling the Trap State Landscape of Colloidal CdSe Nanocrystals with Cadmium Halide Ligands. Chem Mater 2015, 27, 744-56.10.1021/cm503529jSearch in Google Scholar

[98] Jiang C, Lee J-S, Talapin DV. Soluble Precursors for CuInSe2, CuIn1−xGaxSe2, and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands. J Am Chem Soc 2012, 134, 5010-3.10.1021/ja2105812Search in Google Scholar PubMed

[99] Lee J-S, Kovalenko MV, Huang J, Chung DS, Talapin DV. Bandlike transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotechnol 2011, 6, 348-52.10.1038/nnano.2011.46Search in Google Scholar PubMed

[100] Ning Z, Dong H, Zhang Q, Voznyy O, Sargent EH. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots. ACS Nano 2014, 8, 10321-7.10.1021/nn503569pSearch in Google Scholar PubMed

[101] Neo DCJ, Cheng C, Stranks SD, et al. Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chem Mater 2014, 26, 4004-13.10.1021/cm501595uSearch in Google Scholar

[102] efficiency_chart.jpg (4190×2456) n.d. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed September 7, 2015).Search in Google Scholar

[103] Kirmani AR, Carey GH, Abdelsamie M, et al. Effect of Solvent Environment on Colloidal-Quantum-Dot Solar-Cell Manufacturability and Performance. Adv Mater 2014, 26, 4717-23.10.1002/adma.201400577Search in Google Scholar PubMed

[104] Cassagneau T, Mallouk TE, Fendler JH. Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles. J Am Chem Soc 1998, 120, 7848-59.10.1021/ja9806027Search in Google Scholar

[105] Liu Y, Gibbs M, Puthussery J, et al. Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids. Nano Lett 2010, 10, 1960-9.10.1021/nl101284kSearch in Google Scholar PubMed

[106] Lee J-W, Son D-Y, Ahn TK, et al. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent. Sci Rep 2013, 3. 10.1038/srep01050Search in Google Scholar PubMed PubMed Central

[107] Luther JM, Law M, Beard MC, et al. Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Lett 2008, 8, 3488-92.10.1021/nl802476mSearch in Google Scholar PubMed

[108] Dilena E, Xie Y, Brescia R, et al. CuInxGa1−xS2 Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure. Chem Mater 2013, 25, 3180-7.10.1021/cm401563uSearch in Google Scholar

[109] Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection. J Am Chem Soc 2011, 133, 16422-4.10.1021/ja2079509Search in Google Scholar PubMed

[110] Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. J Am Chem Soc 2009, 131, 12554-5.10.1021/ja905922jSearch in Google Scholar PubMed

[111] Im SH, Lee YH, Seok SI, Kim SW, Kim S-W. Quantum-Dot- Sensitized Solar Cells Fabricated by the Combined Process of the Direct Attachment of Colloidal CdSe Quantum Dots Having a ZnS Glue Layer and Spray Pyrolysis Deposition. Langmuir 2010, 26, 18576-80.10.1021/la1034382Search in Google Scholar PubMed

[112] Carey GH, Kramer IJ, Kanjanaboos P, et al. Electronically Active Impurities in Colloidal Quantum Dot Solids. ACS Nano 2014, 8, 11763-9.10.1021/nn505343eSearch in Google Scholar PubMed

[113] Chen M, Yu H, Kershaw SV, et al. Fast, Air-Stable Infrared Photodetectors based on Spray-Deposited Aqueous HgTe Quantum Dots. Adv Funct Mater 2014, 24, 53-9.10.1002/adfm.201301006Search in Google Scholar

[114] Bodnarchuk MI, Kovalenko MV, Pichler S, Fritz-Popovski G, Hesser G, Heiss W. Large-Area Ordered Superlattices from Magnetic Wüstite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting. ACS Nano 2010, 4, 423-31.10.1021/nn901284fSearch in Google Scholar PubMed

[115] Rauch T, Böberl M, Tedde SF, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat Photonics 2009, 3, 332-6.10.1038/nphoton.2009.72Search in Google Scholar

[116] Fischer A, Rollny L, Pan J, et al. Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink. Adv Mater 2013, 25, 5742-9.10.1002/adma.201302147Search in Google Scholar PubMed

[117] Norris DJ, Bawendi MG. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 1996, 53, 16338-46.10.1103/PhysRevB.53.16338Search in Google Scholar

[118] Bailey RE, Nie S. Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J Am Chem Soc 2003, 125, 7100-6.10.1021/ja035000oSearch in Google Scholar PubMed

[119] Zheng J, Zhang C, Dickson RM. Highly Fluorescent, Water- Soluble, Size-Tunable Gold Quantum Dots. Phys Rev Lett 2004, 93, 077402.10.1103/PhysRevLett.93.077402Search in Google Scholar PubMed

[120] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986, 90, 2555-60.10.1021/j100403a003Search in Google Scholar

[121] Moreels I, Lambert K, Smeets D, et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023-30.10.1021/nn900863aSearch in Google Scholar PubMed

[122] Miller OD, Yablonovitch E, Kurtz SR. Strong Internal and External Luminescence as Solar Cells Approach the Shockley #x2013;Queisser Limit. IEEE J Photovolt 2012, 2, 303-11.10.1109/JPHOTOV.2012.2198434Search in Google Scholar

[123] Klimov VI, Mikhailovsky AA, Xu S, et al. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 2000, 290, 314-7.10.1126/science.290.5490.314Search in Google Scholar PubMed

[124] Voznyy O. Mobile Surface Traps in CdSe Nanocrystals with Carboxylic Acid Ligands. J Phys Chem C 2011, 115, 15927-32.10.1021/jp205784gSearch in Google Scholar

[125] Liu Y-F, Yu J-S. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: The effect of ligands. J Colloid Interface Sci 2009, 333, 690-8.10.1016/j.jcis.2009.01.008Search in Google Scholar PubMed

[126] Silva FO, Carvalho MS, Mendonça R, et al. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res Lett 2012, 7, 1-10.10.1186/1556-276X-7-536Search in Google Scholar PubMed PubMed Central

[127] Smith AR, Yoon W, Heuer WB, et al. Effect of Ligand Structure on the Optical and Electronic Properties of Nanocrystalline PbSe Films. J Phys Chem C 2012, 116, 6031-7.10.1021/jp2111023Search in Google Scholar

[128] Xu F, Gerlein LF, Ma X, Haughn CR, Doty MF, Cloutier SG. Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids. Materials 2015, 8, 1858-70.10.3390/ma8041858Search in Google Scholar PubMed PubMed Central

[129] Luque A, Martí A, Nozik AJ. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands. MRS Bull 2007, 32, 236-41.10.1557/mrs2007.28Search in Google Scholar

[130] Beard MC. Multiple Exciton Generation in Semiconductor Quantum Dots. J Phys Chem Lett 2011, 2, 1282-8.10.1021/jz200166ySearch in Google Scholar PubMed

[131] Jung HK, Taniguchi K, Hamaguchi C. Impact ionization model for full band Monte Carlo simulation in GaAs. J Appl Phys 1996, 79, 2473.10.1063/1.361176Search in Google Scholar

[132] Luther JM, Beard MC, Song Q, Law M, Ellingson RJ, Nozik AJ. Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots. Nano Lett 2007, 7, 1779-84.10.1021/nl0708617Search in Google Scholar PubMed

[133] Jeong KS, Tang J, Liu H, et al. Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics. ACS Nano 2012, 6, 89-99.10.1021/nn2039164Search in Google Scholar PubMed

[134] Carey GH, Levina L, Comin R, Voznyy O, Sargent EH. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation. Adv Mater 2015, 27, 3325-30.10.1002/adma.201405782Search in Google Scholar PubMed

[135] Zhitomirsky D, Voznyy O, Hoogland S, Sargent EH. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids. ACS Nano 2013, 7, 5282-90.10.1021/nn402197aSearch in Google Scholar PubMed

[136] Bozyigit D, Volk S, Yarema O, Wood V. Quantification of Deep Traps in Nanocrystal Solids, Their Electronic Properties, and Their Influence on Device Behavior. Nano Lett 2013, 13, 5284-8.10.1021/nl402803hSearch in Google Scholar PubMed

[137] Zhang Y, Zherebetskyy D, Bronstein ND, et al. Molecular Oxygen Induced in-Gap States in PbS Quantum Dots. ACS Nano 2015, 9, 10445-52.10.1021/acsnano.5b04677Search in Google Scholar PubMed

[138] Fiore A, Rossetti M, Alloing B, et al. Carrier diffusion in lowdimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots. Phys Rev B 2004, 70, 205311.10.1103/PhysRevB.70.205311Search in Google Scholar

[139] Maria A, Cyr PW, Klem EJD, Levina L, Sargent EH. Solutionprocessed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. Appl Phys Lett 2005, 87, 213112.10.1063/1.2135868Search in Google Scholar

[140] Johnston KW, Pattantyus-Abraham AG, Clifford JP, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl Phys Lett 2008, 92, 151115.10.1063/1.2912340Search in Google Scholar

[141] Johnston KW, Pattantyus-Abraham AG, Clifford JP, et al. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl Phys Lett 2008, 92, 122111.10.1063/1.2896295Search in Google Scholar

[142] Debnath R, Tang J, Barkhouse DA, et al. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles. J Am Chem Soc 2010, 132, 5952-3.10.1021/ja1013695Search in Google Scholar PubMed

[143] Tang J, Wang X, Brzozowski L, et al. Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination. Adv Mater 2010, 22, 1398-402.10.1002/adma.200903240Search in Google Scholar PubMed

[144] Mai X-D, An HJ, Song JH, Jang J, Kim S, Jeong S. Inverted Schottky quantum dot solar cells with enhanced carrier extraction and air-stability. J Mater Chem A 2014, 2, 20799-805.10.1039/C4TA04305GSearch in Google Scholar

[145] Choi M-J, Oh J, Yoo J-K, Choi J, Sim DM, Jung YS. Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability. Energy Environ Sci 2014, 7, 3052-60.10.1039/C4EE00502CSearch in Google Scholar

[146] Piliego C, Protesescu L, Bisri SZ, Kovalenko MV, Loi MA. 5.2% efficient PbS nanocrystal Schottky solar cells. Energy Environ Sci 2013, 6, 3054-9.10.1039/c3ee41479eSearch in Google Scholar

[147] Nelson J. The physics of solar cells. 2003. London: Imperial College Press, n.d.10.1142/p276Search in Google Scholar

[148] Henry CH. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 1980, 51, 4494-500.10.1063/1.328272Search in Google Scholar

[149] Gur I, Fromer NA, Geier ML, Alivisatos AP. Air-Stable All- Inorganic Nanocrystal Solar Cells Processed from Solution. Science 2005, 310, 462-5.10.1126/science.1117908Search in Google Scholar PubMed

[150] Greenham NC, Peng X, Alivisatos AP. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 1996, 54, 17628-37.10.1103/PhysRevB.54.17628Search in Google Scholar

[151] Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, 2425-7.10.1126/science.1069156Search in Google Scholar PubMed

[152] Wehrenberg BL, Wang C, Guyot-Sionnest P. Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots. J Phys Chem B 2002, 106, 10634-40.10.1021/jp021187eSearch in Google Scholar

[153] Shim M, Guyot-Sionnest P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys 1999, 111, 6955-64.10.1063/1.479988Search in Google Scholar

[154] Blanton SA, Leheny RL, Hines MA, Guyot-Sionnest P. Dielectric Dispersion Measurements of CdSe Nanocrystal Colloids: Observation of a Permanent Dipole Moment. Phys Rev Lett 1997, 79, 865-8.10.1103/PhysRevLett.79.865Search in Google Scholar

[155] Stievater TH, Li X, Steel DG, et al. Rabi Oscillations of Excitons in Single Quantum Dots. Phys Rev Lett 2001, 87, 133603.10.1103/PhysRevLett.87.133603Search in Google Scholar PubMed

[156] Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X. Near Infrared Absorption of CdSexTe1−x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano 2013, 7, 5215-22.10.1021/nn400947eSearch in Google Scholar PubMed

[157] Santra PK, Kamat PV. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J Am Chem Soc 2012, 134, 2508-11.10.1021/ja211224sSearch in Google Scholar PubMed

[158] McElroy N, Page RC, Espinbarro-Valazquez D, et al. Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films 2014, 560, 65-70.10.1016/j.tsf.2013.10.085Search in Google Scholar

[159] Guijarro N, Lana-Villarreal T, Mora-Seró I, Bisquert J, Gómez R. CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment. J Phys Chem C 2009, 113, 4208-14.10.1021/jp808091dSearch in Google Scholar

[160] Chen J, Song JL, Sun XW, et al. An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl Phys Lett 2009, 94, 153115.10.1063/1.3117221Search in Google Scholar

[161] Lee H, Wang M, Chen P, et al. Efficient CdSe Quantum Dot- Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Lett 2009, 9, 4221-7.10.1021/nl902438dSearch in Google Scholar PubMed

[162] Wijayantha KGU, Peter LM, Otley LC. Fabrication of CdS quantum dot sensitized solar cells via a pressing route. Sol Energy Mater Sol Cells 2004, 83, 363-9.10.1016/j.solmat.2003.12.011Search in Google Scholar

[163] Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U. Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano 2010, 4, 5962-8.10.1021/nn1018208Search in Google Scholar PubMed

[164] Roelofs KE, Herron SM, Bent SF. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells. ACS Nano 2015, 9, 8321-34.10.1021/acsnano.5b02853Search in Google Scholar

[165] Kaiser I, Ernst K, Fischer C-H, et al. The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta). Sol Energy Mater Sol Cells 2001, 67, 89-96.10.1016/S0927-0248(00)00267-1Search in Google Scholar

[166] Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors. J Phys Chem 1994, 98, 3183-8.10.1021/j100063a022Search in Google Scholar

[167] Hoyer P, Könenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl Phys Lett 1995, 66, 349-51.10.1063/1.114209Search in Google Scholar

[168] Liu D, Kamat PV. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. J Phys Chem 1993, 97, 10769-73.10.1021/j100143a041Search in Google Scholar

[169] Lee H, Leventis HC, Moon S-J, et al. PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results.” Adv Funct Mater 2009, 19, 2735-42.10.1002/adfm.200900081Search in Google Scholar

[170] Herzog C, Belaidi A, Ogacho A, Dittrich T. Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO2 and In2S3. Energy Environ Sci 2009, 2, 962-4.10.1039/b905897dSearch in Google Scholar

[171] Krunks M, Kärber E, Katerski A, et al. Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol Energy Mater Sol Cells 2010, 94, 1191-5.10.1016/j.solmat.2010.02.036Search in Google Scholar

[172] Jumabekov AN, Siegler TD, Cordes N, et al. Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with ex Situ and in Situ Grown PbS Quantum Dots. J Phys Chem C 2014, 118, 25853-62.10.1021/jp5051904Search in Google Scholar

[173] Zhao K, Yu H, Zhang H, Zhong X. Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells. J Phys Chem C 2014, 118, 5683-90.10.1021/jp4118369Search in Google Scholar

[174] Jiang Y, Zhang X, Ge Q-Q, et al. ITO@Cu2S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum- Dot-Sensitized Solar Cells. Nano Lett 2014, 14, 365-72.10.1021/nl404251pSearch in Google Scholar PubMed

[175] Chen H, Zhu L, Liu H, Li W. ITO Porous Film-Supported Metal Sulfide Counter Electrodes for High-Performance Quantum- Dot-Sensitized Solar Cells. J Phys Chem C 2013, 117, 3739-46.10.1021/jp309967wSearch in Google Scholar

[176] Yang Y, Zhu L, Sun H, et al. Composite Counter Electrode Based on Nanoparticulate PbS and Carbon Black: Towards Quantum Dot-Sensitized Solar Cells with Both High Efficiency and Stability. ACS Appl Mater Interfaces 2012, 4, 6162-8.10.1021/am301787qSearch in Google Scholar PubMed

[177] Wang J, Mora-Seró I, Pan Z, et al. Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. J Am Chem Soc 2013, 135, 15913-22.10.1021/ja4079804Search in Google Scholar PubMed

[178] Pan Z, Mora-Seró I, Shen Q, et al. High-Efficiency “Green” Quantum Dot Solar Cells. J Am Chem Soc 2014, 136, 9203-10.10.1021/ja504310wSearch in Google Scholar PubMed

[179] Li L, Yang X, Gao J, et al. Highly Efficient CdS Quantum Dot- Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. J Am Chem Soc 2011, 133, 8458-60. 10.1021/ja201841pSearch in Google Scholar PubMed

[180] Zhao K, Pan Z, Mora-Seró I, et al. Boosting Power Conversion Eflciencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. J Am Chem Soc 2015, 137, 5602-9.10.1021/jacs.5b01946Search in Google Scholar PubMed

[181] Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, et al. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano 2010, 4, 3374-80.10.1021/nn100335gSearch in Google Scholar PubMed

[182] Willis SM, Cheng C, Assender HE, Watt AAR. The Transitional Heterojunction Behavior of PbS/ZnO Colloidal Quantum Dot Solar Cells. Nano Lett 2012, 12, 1522-6.10.1021/nl204323jSearch in Google Scholar PubMed

[183] Ko D-K, Brown PR, Bawendi MG, Bulović V. p-i-n Heterojunction Solar Cells with a Colloidal Quantum-Dot Absorber Layer. Adv Mater 2014, 26, 4845-50.10.1002/adma.201401250Search in Google Scholar PubMed

[184] Gao J, Luther JM, Semonin OE, Ellingson RJ, Nozik AJ, Beard MC. Quantum Dot Size Dependent J−V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells. Nano Lett 2011, 11, 1002-8.10.1021/nl103814gSearch in Google Scholar PubMed

[185] Schnitzenbaumer KJ, Labrador T, Dukovic G. Impact of Chalcogenide Ligands on Excited State Dynamics in CdSe Quantum Dots. J Phys Chem C 2015, 119, 13314-24.10.1021/acs.jpcc.5b02880Search in Google Scholar

[186] Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA. Size-Dependent Extinction Coefficients of PbS Quantum Dots. J Am Chem Soc 2006, 128, 10337-46.10.1021/ja063166uSearch in Google Scholar PubMed

[187] Yoon W, Boercker JE, Lumb MP, Placencia D, Foos EE, Tischler JG. Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells. Sci Rep 2013, 3.10.1038/srep02225Search in Google Scholar PubMed PubMed Central

[188] Sun Z, Sitbon G, Pons T, Bakulin AA, Chen Z. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sci Rep 2015, 5.10.1038/srep10626Search in Google Scholar PubMed PubMed Central

[189] Park SH, Roy A, Beaupré S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 2009, 3, 297-302.10.1038/nphoton.2009.69Search in Google Scholar

[190] Liang Y, Feng D, Wu Y, et al. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J Am Chem Soc 2009, 131, 7792-9.10.1021/ja901545qSearch in Google Scholar PubMed

[191] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-7.10.1126/science.1228604Search in Google Scholar PubMed

[192] Heremans P, Cheyns D, Rand BP. Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture. Acc Chem Res 2009, 42, 1740-7.10.1021/ar9000923Search in Google Scholar PubMed

[193] Kim JY, Kim SH, Lee H-H, et al. New Architecture for High- Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv Mater 2006, 18, 572-6.10.1002/adma.200501825Search in Google Scholar

[194] Kramer IJ, Sargent EH. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chem Rev 2014, 114, 863-82.10.1021/cr400299tSearch in Google Scholar PubMed

[195] Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-93.10.1039/c1nr10867kSearch in Google Scholar PubMed

[196] Heo JH, Im SH, Noh JH, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 2013, 7, 486-91.10.1038/nphoton.2013.80Search in Google Scholar

[197] Dabirian A, Taghavinia N. Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength- Scale Silver Particles. ACS Appl Mater Interfaces 2015.10.1021/acsami.5b03719Search in Google Scholar PubMed

[198] Niggemann M, Riede M, Gombert A, Leo K. Light trapping in organic solar cells. Phys Status Solidi A 2008, 205, 2862-74.10.1002/pssa.200880461Search in Google Scholar

[199] Rim S-B, Zhao S, Scully SR, McGehee MD, Peumans P. An effective light trapping configuration for thin-film solar cells. Appl Phys Lett 2007, 91, 243501.10.1063/1.2789677Search in Google Scholar

[200] Polman A, Atwater HA. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 2012, 11, 174-7.10.1038/nmat3263Search in Google Scholar PubMed

[201] Chou C-H, Chen F-C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 2014, 6, 8444.10.1039/C4NR02191FSearch in Google Scholar

[202] Zhang W, Saliba M, Stranks SD, et al. Enhancement of Perovskite-Based Solar Cells Employing Core-Shell Metal Nanoparticles. Nano Lett 2013, 13, 4505-10.10.1021/nl4024287Search in Google Scholar PubMed

[203] Atwater HA. The Promise of Plasmonics. Sci Am 2007, 296, 56-62.10.1038/scientificamerican0407-56Search in Google Scholar

[204] Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics 2010, 4, 83-91.10.1038/nphoton.2009.282Search in Google Scholar

[205] Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010, 9, 193-204.10.1038/nmat2630Search in Google Scholar PubMed

[206] Maier SA, Atwater HA. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 2005, 98, 011101.10.1063/1.1951057Search in Google Scholar

[207] Ozbay E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311, 189-93.10.1126/science.1114849Search in Google Scholar PubMed

[208] Maier SA. Plasmonics: Fundamentals and Applications. Springer Science & Business Media, 2007.10.1007/0-387-37825-1Search in Google Scholar

[209] Lan X, Bai J, Masala S, et al. Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells. Adv Mater 2013, 25, 1769-73.10.1002/adma.201203759Search in Google Scholar PubMed

[210] Kramer IJ, Zhitomirsky D, Bass JD, et al. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells. Adv Mater 2012, 24, 2315-9.10.1002/adma.201104832Search in Google Scholar PubMed

[211] Jean J, Chang S, Brown PR, et al. ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Adv Mater 2013, 25, 2790-6.10.1002/adma.201204192Search in Google Scholar PubMed

[212] Rath AK, Bernechea M, Martinez L, de Arquer FPG, Osmond J, Konstantatos G. Solution-processed inorganic bulk nanoheterojunctions and their application to solar cells. Nat Photonics 2012, 6, 529-34.10.1038/nphoton.2012.139Search in Google Scholar

[213] Tan F, Qu S, Jiang Q, et al. Interpenetrated Inorganic Hybrids for Efficiency Enhancement of PbS Quantum Dot Solar Cells. Adv Energy Mater 2014, 4, n/a - n/a.10.1002/aenm.201400512Search in Google Scholar

[214] Etgar L, Yanover D, Čapek RK, et al. Core/Shell PbSe/PbS QDs TiO2 Heterojunction Solar Cell. Adv Funct Mater 2013, 23, 2736-41.10.1002/adfm.201202322Search in Google Scholar

[215] Ning Z, Zhitomirsky D, Adinolfi V, et al. Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics. Adv Mater 2013, 25, 1719-23.10.1002/adma.201204502Search in Google Scholar PubMed

[216] Yuan M, Zhitomirsky D, Adinolfi V, et al. Doping Control Via Molecularly Engineered Surface Ligand Coordination. Adv Mater 2013, 25, 5586-92.10.1002/adma201302802Search in Google Scholar PubMed

[217] Hoye RLZ, Ehrler B, Böhm ML, et al. Improved Open- Circuit Voltage in ZnO-PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail. Adv Energy Mater 2014, 4, n/a - n/a.10.1002/aenm.201301544Search in Google Scholar PubMed PubMed Central

[218] Chang J, Kuga Y, Mora-Seró I, et al. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale 2015, 7, 5446-56. 10.1039/C4NR07521HSearch in Google Scholar PubMed

[219] Kim JY, Voznyy O, Zhitomirsky D, Sargent EH. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances. Adv Mater 2013, 25, 4986-5010.10.1002/adma.201301947Search in Google Scholar PubMed

[220] Yuan M, Voznyy O, Zhitomirsky D, Kanjanaboos P, Sargent EH. Synergistic Doping of Fullerene Electron Transport Layer and Colloidal Quantum Dot Solids Enhances Solar Cell Performance. Adv Mater 2015, 27, 917-21.10.1002/adma.201404411Search in Google Scholar PubMed

[221] Nam M, Park J, Lee K, et al. A multifunctional fullerene interlayer in colloidal quantum dot-based hybrid solar cells. J Mater Chem A 2015, 3, 10585-91.10.1039/C5TA00854ASearch in Google Scholar

[222] Shi J, Zhao P, Wang X. Piezoelectric-Polarization-Enhanced Photovoltaic Performance in Depleted-Heterojunction Quantum-Dot Solar Cells. Adv Mater 2013, 25, 916-21.10.1002/adma.201203021Search in Google Scholar PubMed

[223] Brown PR, Lunt RR, Zhao N, et al. Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a MoO3 Interfacial Layer. Nano Lett 2011, 11, 2955-61.10.1021/nl201472uSearch in Google Scholar PubMed

[224] Brown PR, Kim D, Lunt RR, et al. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano 2014, 8, 5863-72.10.1021/nn500897cSearch in Google Scholar PubMed

[225] Gonfa BA, Kim MR, Delegan N, et al. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Nanoscale 2015, 7, 10039-49.10.1039/C5NR02371HSearch in Google Scholar

[226] Xu F, Ma X, Haughn CR, Benavides J, Doty MF, Cloutier SG. Efficient Exciton Funneling in Cascaded PbS Quantum Dot Superstructures. ACS Nano 2011, 5, 9950-7.10.1021/nn203728tSearch in Google Scholar PubMed

[227] Kim JY, Adinolfi V, Sutherland BR, et al. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nat Commun 2015, 6.10.1038/ncomms8772Search in Google Scholar PubMed PubMed Central

[228] Voznyy O, Zhitomirsky D, Stadler P, Ning Z, Hoogland S, Sargent EH. A Charge-Orbital Balance Picture of Doping in Colloidal Quantum Dot Solids. ACS Nano 2012, 6, 8448-55.10.1021/nn303364dSearch in Google Scholar PubMed

[229] Liu H, Zhitomirsky D, Hoogland S, et al. Systematic optimization of quantum junction colloidal quantum dot solar cells. Appl Phys Lett 2012, 101, 151112.10.1063/1.4757866Search in Google Scholar

[230] Stavrinadis A, Rath AK, de Arquer FPG, et al. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nat Commun 2013, 4.10.1038/ncomms3981Search in Google Scholar PubMed PubMed Central

[231] Adinolfi V., Ning Z., Xu J., et al. Electric field engineering using quantum-size-effect-tuned heterojunctions. Appl Phys Lett 2013, 103, 011106-011106 - 4.10.1063/1.4813074Search in Google Scholar

[232] Cheng C, Lee MM, Noel NK, et al. Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells. ACS Appl Mater Interfaces 2014, 6, 14247-52.10.1021/am503558qSearch in Google Scholar PubMed

[233] Labelle AJ, Thon SM, Masala S, et al. Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring. Nano Lett 2015, 15, 1101-8.10.1021/nl504086vSearch in Google Scholar PubMed

[234] Mihi A, Beck FJ, Lasanta T, Rath AK, Konstantatos G. Imprinted Electrodes for Enhanced Light Trapping in Solution Processed Solar Cells. Adv Mater 2014, 26, 443-8.10.1002/adma.201303674Search in Google Scholar PubMed

[235] Adachi MM, Labelle AJ, Thon SM, Lan X, Hoogland S, Sargent EH. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Sci Rep 2013, 3.10.1038/srep02928Search in Google Scholar PubMed PubMed Central

[236] Koleilat GI, Kramer IJ, Wong CTO, et al. Folded-Light-Path Colloidal Quantum Dot Solar Cells. Sci Rep 2013, 3.10.1038/srep02166Search in Google Scholar PubMed PubMed Central

[237] Kim G-H, Walker B, Kim H-B, et al. Inverted Colloidal Quantum Dot Solar Cells. Adv Mater 2014, 26, 3321-7.10.1002/adma.201305583Search in Google Scholar PubMed

[238] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010, 9, 205-13.10.1038/nmat2629Search in Google Scholar PubMed

[239] Green MA, Pillai S. Harnessing plasmonics for solar cells. Nat Photonics 2012, 6, 130-2.10.1038/nphoton.2012.30Search in Google Scholar

[240] Paz-Soldan D, Lee A, Thon SM, et al. Jointly Tuned Plasmonic-Excitonic Photovoltaics Using Nanoshells. Nano Lett 2013, 13, 1502-8.10.1021/nl304604ySearch in Google Scholar PubMed

[241] Kawawaki T, Wang H, Kubo T, et al. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. ACS Nano 2015, 9, 4165-72.10.1021/acsnano.5b00321Search in Google Scholar PubMed

[242] Yablonovitch E. Statistical ray optics. J Opt Soc Am 1982, 72, 899.10.1364/JOSA.72.000899Search in Google Scholar

[243] Kholmicheva N, Moroz P, Rijal U, et al. Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation. ACS Nano 2014, 8, 12549-59.10.1021/nn505375nSearch in Google Scholar PubMed

[244] Beck FJ, Stavrinadis A, Diedenhofen SL, Lasanta T, Konstantatos G. Surface Plasmon Polariton Couplers for Light Trapping in Thin-Film Absorbers and Their Application to Colloidal Quantum Dot Optoelectronics. ACS Photonics 2014, 1, 1197-205.10.1021/ph5002704Search in Google Scholar

[245] Beck FJ, Lasanta T, Konstantatos G. Plasmonic Schottky Nanojunctions for Tailoring the Photogeneration Profile in Thin Film Solar Cells. Adv Opt Mater 2014, 2, 493-500.10.1002/adom.201300460Search in Google Scholar

[246] Cotal H, Fetzer C, Boisvert J, et al. III-V multijunction solar cells for concentrating photovoltaics. Energy Environ Sci 2009, 2, 174-92.10.1039/B809257ESearch in Google Scholar

[247] Chen C-C, Chang W-H, Yoshimura K, et al. An Efficient Triple- Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%. Adv Mater 2014, 26, 5670-7.10.1002/adma.201402072Search in Google Scholar PubMed

[248] Koleilat GI, Wang X, Sargent EH. Graded Recombination Layers for Multijunction Photovoltaics. Nano Lett 2012, 12, 3043-9.10.1021/nl300891hSearch in Google Scholar PubMed

[249] Speirs MJ, Groeneveld BGHM, Protesescu L, Piliego C, Kovalenko MV, Loi MA. Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum. Phys Chem Chem Phys 2014, 16, 7672-6.10.1039/C4CP00846DSearch in Google Scholar PubMed

[250] Koleilat GI, Wang X, Labelle AJ, et al. A Donor-Supply Electrode (DSE) for Colloidal Quantum Dot Photovoltaics. Nano Lett 2011, 11, 5173-8.10.1021/nl202337aSearch in Google Scholar PubMed

[251] Ma W, Luther JM, Zheng H, Wu Y, Alivisatos AP. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals. Nano Lett 2009, 9, 1699-703.10.1021/nl900388aSearch in Google Scholar PubMed

[252] Ip AH, Kiani A, Kramer IJ, et al. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. ACS Nano 2015, 9, 8833-42.10.1021/acsnano.5b02164Search in Google Scholar PubMed

[253] Zhu H, Lian T. Enhanced Multiple Exciton Dissociation from CdSe Quantum Rods: The Effect of Nanocrystal Shape. J Am Chem Soc 2012, 134, 11289-97.10.1021/ja304724uSearch in Google Scholar PubMed

[254] Stolle CJ, Harvey TB, Pernik DR, et al. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J Phys Chem Lett 2014, 5, 304-9.10.1021/jz402596vSearch in Google Scholar PubMed

[255] Stolle CJ, Schaller RD, Korgel BA. Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals. J Phys Chem Lett 2014, 5, 3169-74.10.1021/jz501640fSearch in Google Scholar PubMed

[256] Semonin OE, Luther JM, Choi S, et al. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science 2011, 334, 1530-3.10.1126/science.1209845Search in Google Scholar PubMed

[257] Midgett AG, Luther JM, Stewart JT, et al. Size and Composition Dependent Multiple Exciton Generation Efficiency in PbS, PbSe, and PbSxSe1-x Alloyed Quantum Dots. Nano Lett 2013, 13, 3078-85.10.1021/nl4009748Search in Google Scholar PubMed

[258] Marshall AR, Beard MC, Luther JM. Multiple exciton generation solar cells: Effects of nanocrystal shape on quantum efficiency. Photovolt. Spec. Conf. PVSC 2014 IEEE 40th, 2014, p. 1077-9.10.1109/PVSC.2014.6925101Search in Google Scholar

[259] Ono M, Nishihara T, Ihara T, et al. Impact of surface ligands on the photocurrent enhancement due to multiple exciton generation in close-packed nanocrystal thin films. Chem Sci 2014, 5, 2696-701.10.1039/c4sc00436aSearch in Google Scholar

[260] Geiregat P, Delerue C, Justo Y, et al. A Phonon Scattering Bottleneck for Carrier Cooling in Lead Chalcogenide Nanocrystals. ACS Nano 2015, 9, 778-88.10.1021/nn5062723Search in Google Scholar PubMed

[261] Cirloganu CM, Padilha LA, Lin Q, et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat Commun 2014, 5.10.1038/ncomms5148Search in Google Scholar PubMed PubMed Central

[262] Tabachnyk M, Ehrler B, Gélinas S, et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat Mater 2014, 13, 1033-8.10.1038/nmat4093Search in Google Scholar PubMed

[263] Thompson NJ, Wilson MWB, Congreve DN, et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat Mater 2014, 13, 1039-43.10.1038/nmat4097Search in Google Scholar PubMed

[264] Shcherbatyuk GV, Inman RH, Wang C, Winston R, Ghosh S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl Phys Lett 2010, 96, 191901.10.1063/1.3422485Search in Google Scholar

[265] Viswanatha R, Brovelli S, Pandey A, Crooker SA, Klimov VI. Copper-Doped Inverted Core/Shell Nanocrystals with “Permanent” Optically Active Holes. Nano Lett 2011, 11, 4753-8.10.1021/nl202572cSearch in Google Scholar PubMed

[266] Meinardi F, Colombo A, Velizhanin KA, et al. Large-area luminescent solar concentrators based on /‘Stokes-shiftengineered/’ nanocrystals in a mass-polymerized PMMA matrix. Nat Photonics 2014, 8, 392-9.10.1038/nphoton.2014.54Search in Google Scholar

[267] Coropceanu I, Bawendi MG. Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency. Nano Lett 2014, 14, 4097-101.10.1021/nl501627eSearch in Google Scholar PubMed

[268] Erickson CS, Bradshaw LR, McDowall S, Gilbertson JD, Gamelin DR, Patrick DL. Zero-Reabsorption Doped- Nanocrystal Luminescent Solar Concentrators. ACS Nano 2014, 8, 3461-7.10.1021/nn406360wSearch in Google Scholar PubMed

[269] Bradshaw LR, Knowles KE, McDowall S, Gamelin DR. Nanocrystals for Luminescent Solar Concentrators. Nano Lett 2015, 15, 1315-23.10.1021/nl504510tSearch in Google Scholar PubMed

[270] Meinardi F, McDaniel H, Carulli F, et al. Highly efficient largearea colourless luminescent solar concentrators using heavymetal- free colloidal quantum dots. Nat Nanotechnol 2015, 10, 878-85.10.1038/nnano.2015.178Search in Google Scholar PubMed

[271] Bronstein ND, Yao Y, Xu L, et al. Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration. ACS Photonics 2015.10.1021/acsphotonics.5b00334Search in Google Scholar

[272] Zhitomirsky D, Voznyy O, Levina L, et al. Engineering colloidal quantum dot solids within and beyond the mobilityinvariant regime. Nat Commun 2014, 5.10.1038/ncomms4803Search in Google Scholar PubMed

[273] Ning Z, Gong X, Comin R, et al. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324-8. 10.1038/nature14563Search in Google Scholar PubMed

Received: 2015-9-10
Accepted: 2015-12-10
Published Online: 2016-6-11
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0017/html
Scroll to top button