Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) April 16, 2020

Crystal structure of (E)-1-(2-nitrophenyl)-N-(o-tolyl)methanimine, C14H12N2O2

  • Sulaiman A. Olagboye , Tunde L. Yusuf , Segun D. Oladipo and Sizwe J. Zamisa ORCID logo EMAIL logo

Abstract

C14H12N2O2, monoclinic, P21, a = 8.3844(1) Å, b = 20.0465(3) Å, c = 14.0511(2) Å, β = 94.786(1)°, V = 2353.44(6) Å3, Z = 4, Rgt(F) = 0.0356, wRref(F2) = 0.1022, T = 150(2) K.

CCDC no.: 1985073

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow block
Size:0.25 × 0.21 × 0.13 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:27°, >99%
N(hkl)measured, N(hkl)unique, Rint:14543, 9464, 0.013
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 8295
N(param)refined:653
Programs:Bruker programs [1], SHELX [2], [3], Mercury [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O1A0.4015(2)0.55500(12)0.37669(13)0.0412(5)
O2A0.5065(3)0.62258(15)0.2793(2)0.0463(7)
N1A0.1639(3)0.40462(12)0.32621(16)0.0268(5)
N2A0.4102(3)0.57940(14)0.2971(2)0.0295(6)
C1A−0.0121(4)0.2835(2)0.3225(3)0.0354(8)
H1AA0.0353610.2789180.2614640.053*
H1AB−0.0895410.3202290.3183490.053*
H1AC−0.0666530.2419330.3370570.053*
C2A0.1163(4)0.29782(18)0.3997(3)0.0284(7)
C3A0.1524(5)0.25363(18)0.4753(2)0.0319(8)
H3A0.0905190.2140860.4783500.038*
C4A0.2731(5)0.26488(18)0.5454(3)0.0334(8)
H4A0.2946760.2333510.5952610.040*
C5A0.3639(5)0.32295(18)0.5428(3)0.0326(8)
H5A0.4481440.3310890.5908600.039*
C6A0.3313(4)0.36882(16)0.4700(2)0.0274(7)
H6A0.3927370.4085810.4688390.033*
C7A0.2092(4)0.35717(15)0.3985(2)0.0236(7)
C8A0.2696(4)0.44361(15)0.29730(18)0.0257(6)
H8A0.3779080.4399770.3226270.031*
C10A0.2942(4)0.55774(17)0.2196(2)0.0243(7)
C11A0.2541(4)0.60282(17)0.1475(3)0.0291(7)
H11A0.3050970.6451160.1470110.035*
C12A0.1381(4)0.5855(2)0.0758(2)0.0318(7)
H12A0.1089130.6158320.0254130.038*
C13A0.0652(5)0.5239(2)0.0778(3)0.0347(8)
H13A−0.0145470.5120610.0286910.042*
C14A0.1070(4)0.47888(19)0.1511(2)0.0293(7)
H14A0.0554290.4366940.1511830.035*
O1B0.3488(2)0.44289(13)−0.12691(13)0.0408(5)
O2B0.2402(3)0.37674(14)−0.0293(2)0.0439(7)
N1B0.5896(3)0.59253(12)−0.07785(16)0.0266(5)
N2B0.3388(3)0.41924(15)−0.0475(2)0.0307(6)
C1B0.7740(5)0.7122(2)−0.0734(3)0.0412(9)
H1BA0.7371800.745292−0.0287440.062*
H1BB0.8680600.729522−0.1022840.062*
H1BC0.8024470.670832−0.0389290.062*
C2B0.6411(4)0.69831(18)−0.1512(3)0.0281(7)
C3B0.6077(5)0.74462(19)−0.2248(3)0.0358(9)
H3B0.6691260.784399−0.2257110.043*
C4B0.4865(5)0.7335(2)−0.2964(3)0.0404(10)
H4B0.4659000.765203−0.3461120.048*
C5B0.3961(5)0.67606(19)−0.2951(3)0.0362(8)
H5B0.3126870.668318−0.3438230.043*
C6B0.4266(4)0.62982(18)−0.2230(2)0.0299(7)
H6B0.3645330.590206−0.2225570.036*
C7B0.5493(4)0.64117(17)−0.1504(2)0.0261(7)
C8B0.4833(3)0.55495(15)−0.04935(19)0.0253(6)
H8B0.3754090.559104−0.0752680.030*
C9B0.5273(4)0.50392(16)0.0252(2)0.0227(7)
C10B0.4553(4)0.44168(17)0.0298(2)0.0239(7)
C11B0.4945(4)0.39617(16)0.1030(2)0.0277(7)
H11B0.4424600.3541140.1039160.033*
C12B0.6108(4)0.4135(2)0.1743(2)0.0317(7)
H12B0.6391890.3833190.2250680.038*
C13B0.6859(4)0.4750(2)0.1716(2)0.0313(8)
H13B0.7665940.4865440.2203340.038*
C14B0.6446(4)0.51962(18)0.0987(2)0.0294(7)
H14B0.6967430.5616920.0984050.035*
O1C0.0060(2)0.52358(13)−0.14939(13)0.0410(5)
O2C0.0113(4)0.62417(15)−0.2026(3)0.0552(8)
N1C−0.2910(3)0.38935(12)−0.18932(16)0.0254(5)
N2C−0.0470(3)0.56852(14)−0.20288(19)0.0308(6)
C1C−0.5187(4)0.2845(2)−0.1814(3)0.0369(8)
H1CA−0.5616270.239262−0.1771920.055*
H1CB−0.4744320.290408−0.2432720.055*
H1CC−0.6047270.316997−0.1753930.055*
C2C−0.3904(4)0.29512(17)−0.1032(3)0.0283(7)
C3C−0.3739(5)0.25360(18)−0.0231(3)0.0328(8)
H3C−0.4482910.218263−0.0183220.039*
C4C−0.2548(5)0.26174(18)0.0490(3)0.0348(8)
H4C−0.2474650.2324600.1023970.042*
C5C−0.1451(5)0.31315(19)0.0433(3)0.0341(8)
H5C−0.0618360.3188850.0927810.041*
C6C−0.1566(4)0.35630(17)−0.0344(2)0.0272(7)
H6C−0.0804650.391092−0.0381810.033*
C7C−0.2790(4)0.34877(15)−0.1067(2)0.0225(6)
C8C−0.2624(3)0.45148(15)−0.1785(2)0.0240(6)
H8C−0.2326160.468866−0.1166580.029*
C9C−0.2756(4)0.49630(16)−0.2618(2)0.0238(7)
C10C−0.1826(4)0.55382(17)−0.2721(2)0.0251(7)
C11C- 0.2082(4)0.59679(18)−0.3480(3)0.0323(8)
H11C−0.1441530.635648−0.3517970.039*
C12C−0.3283(4)0.5829(2)−0.4190(2)0.0327(8)
H12C−0.3472640.612118−0.4719250.039*
C13C−0.4200(4)0.5265(2)−0.4123(2)0.0327(8)
H13C−0.5013700.516528−0.4614310.039*
C14C−0.3950(4)0.48389(17)−0.3348(2)0.0266(7)
H14C−0.4606080.445476−0.3312630.032*
O1D−0.2547(2)0.46948(12)−0.59930(13)0.0396(5)
O2D−0.2554(4)0.36818(14)−0.5488(2)0.0505(7)
N1D0.0371(3)0.60515(12)−0.55713(16)0.0248(5)
N2D−0.1996(3)0.42452(15)−0.5473(2)0.0304(6)
C1D0.2644(4)0.7109(2)−0.5656(3)0.0354(8)
H1DA0.2232320.738723−0.5156880.053*
H1DB0.3543790.733681−0.5918550.053*
H1DC0.3005450.668050−0.5381460.053*
C2D0.1324(4)0.69913(17)−0.6447(2)0.0252(7)
C3D0.1152(5)0.74168(18)−0.7234(3)0.0317(8)
H3D0.1878560.777729−0.7275990.038*
C4D−0.0060(5)0.73235(19)−0.7958(3)0.0352(9)
H4D−0.0148670.761420- 0.8493820.042*
C5D−0.1135(5)0.68070(18)−0.7896(3)0.0321(8)
H5D−0.1970300.674270−0.8386940.039*
C6D−0.0993(4)0.63846(17)−0.7119(2)0.0281(7)
H6D−0.1739840.603204−0.7073120.034*
C7D0.0247(4)0.64717(16)−0.6395(2)0.0243(6)
C8D0.0110(3)0.54362(14)−0.56873(19)0.0226(6)
H8D−0.0176200.526500−0.6308520.027*
C9D0.0252(4)0.49789(16)−0.4853(2)0.0217(6)
C10D−0.0647(4)0.44009(17)−0.4770(2)0.0238(7)
C11D−0.0384(4)0.39611(17)−0.4002(3)0.0299(7)
H11D−0.1014050.356934−0.3968630.036*
C12D0.0807(4)0.4105(2)−0.3292(3)0.0338(8)
H12D0.1006860.380960−0.2766810.041*
C13D0.1713(4)0.4682(2)−0.3349(2)0.0316(8)
H13D0.2521380.478449−0.2856620.038*
C14D0.1445(4)0.51060(18)−0.4116(2)0.0291(7)
H14D0.2084920.549517−0.4146330.035*

Source of material

The title compound was synthesized via a solvent free approach by stirring equimolar o-toluidine (0.11 g, 1.0 mmol) and 2-nitrobenzaldehyde (0.1 g, 1.0 mmol) in a poly top vial for 5 minutes using a glass rod to yield a yellow compound. Rectangular crystals suitable for X-ray diffraction were obtained by slow evaporation from diethylether within 48 h. Yield = 0.23 g (96%), 1H NMR (400 MHz, Chloroform-d) δ 8.83 (s, 1H), 8.32 (dd, J = 7.8 Hz, 1H), 8.06 (dd, J = 8.2 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.62 (td, J = 7.8 Hz, 1H), 7.23 (d, J = 6.6 Hz, 3H), 7.21–7.13 (m, 1H), 7.05–6.99 (m, 1H), 2.40 (s, 3H). 13C NMR (400 MHz, Chloroform-d) δ = 155.04, 150.18, 149.35, 133.51, 132.27, 131.29, 131.08, 130.44, 129.89, 126.90, 126.62, 124.50, 117.84, 17.87. C14H12N2O2 Calcd: C = 69.99%, H = 5.03%, N = 11.66%; Found: C = 70.01%, H = 5.10%, N = 11.30%.

Experimental details

The structure was solved by the intrinsic phasing using the SHELXT [2] program and refined using SHELXL [3]. The visual crystal structure information was performed using Mercury [4]. All C—Haromatic and O—H bond distances were restrained to 0.95 Å, 0.98 Å and 0.99 Å with Uiso(Haromatic) = 1.2Ueq and Uiso(Hhydroxyl) = 1.5Ueq of parent atom, respectively.

Discussion

Schiff bases are organic compounds with an azomethine or imine (—C=N—) functional group, where the imine nitrogen atom can be linked to different groups such as alkyl, cycloalkyl, aryl or heterocyclic groups, but not hydrogen atom [5]. They are well known for their significant biological activities such as antioxidant [6], [7], antibacterial [5], [8], antifungal [9], [10], and anticancer agents [11], [12]. Other applications also include, as sensors [13], [14], corrosion inhibitors [15], [16] and chelating ligands in coordination chemistry [17], [18]. The condensation reaction between primary amines (R-NH2), with active carbonyl compounds (aldehyde or ketone), affords Schiff bases [19], [20], [21]. Schiff bases with aryl substituents are relatively stable and easy to prepare when compared with those that have alkyl substituents and during condensation reactions, aldehydes react faster than ketones [22]. The title compound has been synthesized by Zhou et al. [23] using the conventional method. We now report a solvent-free approach via mechanochemistry techniques. Aside from being a greener approach, the mechanochemistry method (grinding) also afforded the product within 5 minutes and even higher yield when compared to the one reported in the literature [23].

The crystal structure of the title compound has four symmetrically non-equivalent molecules in the asymmetric unit. The molecular units have similar conformation with dihedral angle between the anilyl and phenyl rings ranging from 5.2(1)° to 6.4(1)°, which is slightly wider than that observed in (E)-1-(2-nitrophenyl)-N-(p-tolyl)methanimine (3.09(8)°) [24]. All intramolecular bond parameters are comparable with closely related compounds in literature [25], [26], [27], [28], [29], [30], [31]. Non-classical intermolecular C—H⋯O hydrogen bonding exist between the aromatic hydrogens (H13A-D) and the nitro group’s oxygen atom (O1A-D). This forms chains which extends diagonally with respect to the crystallographic a and c axes. Intermolecular π⋯π interactions were also observed in the crystal packing of the title compound.

Acknowledgements

We thank Ekiti state university and TETFUND for research grant and University of KwaZulu-Natal for the providing the research facilities.

References

1. Bruker, APEXII, Bruker AXS Inc, Madison, WI, USA (2009).Search in Google Scholar

2. Sheldrick, G. M.: SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A64 (2015) 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 − new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41 (2008) 466–470.10.1107/S0021889807067908Search in Google Scholar

5. da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V. B.; de Fátima, A.: Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2 (2011) 1–8.10.1016/j.jare.2010.05.004Search in Google Scholar

6. Guo, Z.; Xing, R.; Liu, S.; Yu, H.; Wang, P.; Li, C.; Li, P.: The synthesis and antioxidant activity of the Schiff bases of chitosan and carboxymethyl chitosan. Bioorg. Med. Chem. Lett. 15 (2005) 4600–4603.10.1016/j.bmcl.2005.06.095Search in Google Scholar PubMed

7. Cheng, L.-X.; Tang, J.-J.; Luo, H.; Jin, X.-L.; Dai, F.; Yang, J.; Qian, Y.-P.; Li, X.-Z.; Zhou, B.: Antioxidant and antiproliferative activities of hydroxyl-substituted Schiff bases. Bioorg. Med. Chem. Lett. 20 (2010) 2417–2420.10.1016/j.bmcl.2010.03.039Search in Google Scholar PubMed

8. Jarrahpour, A.; Motamedifar, M.; Pakshir, K.; Hadi, N.; Zarei, M.: Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules. 9 (2004) 815–824.10.3390/91000815Search in Google Scholar PubMed PubMed Central

9. Chen, Y.; Mi, Y.; Sun, X.; Zhang, J.; Li, Q.; Ji, N.; Guo, Z.: Novel Inulin Derivatives Modified with Schiff Bases: Synthesis, Characterization, and Antifungal Activity. Polymers. 11 (2019) 998.10.3390/polym11060998Search in Google Scholar PubMed PubMed Central

10. Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J.: Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules. 12 (2007) 1720–1730.10.3390/12081720Search in Google Scholar PubMed PubMed Central

11. Mahal, A.; Wu, P.; Jiang, Z. H.; Wei, X.: Schiff Bases of Tetrahydrocurcumin as Potential Anticancer Agents. ChemistrySelect. 4 (2019) 366–369.10.1002/slct.201803159Search in Google Scholar

12. Desai, S. B.; Desai, P.; Desai, K.: Synthesis of some Schiff bases, thiazolidinones and azetidinones derived from 2, 6-diaminobenzo [1, 2-d: 4, 5-d′] bisthiazole and their anticancer activities. Heterocycl. Commun. 7 (2001) 83–90.10.1515/HC.2001.7.1.83Search in Google Scholar

13. Berhanu, A. L.; Gaurav;Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K.-H.: A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem. 116 (2019) 74–91.10.1016/j.trac.2019.04.025Search in Google Scholar

14. Aksuner, N.; Henden, E.; Yilmaz, I.; Cukurovali, A.: Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films. Sensor. Actuat. B-Chem. 134 (2008) 510–515.10.1016/j.snb.2008.05.041Search in Google Scholar

15. Shetty, P.: Schiff bases: An overview of their corrosion inhibition activity in acid media against mild steel. Chem. Eng. Comm. 206 (2019) 1–45.10.1080/00986445.2019.1630387Search in Google Scholar

16. Talebian, M.; Raeissi, K.; Atapour, M.; Fernández-Pérez, B.; Betancor-Abreu, A.; Llorente, I.; Fajardo, S.; Salarvand, Z.; Meghdadi, S.; Amirnasr, M.: Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases. Corros. Sci. 160 (2019) 108130.10.1016/j.corsci.2019.108130Search in Google Scholar

17. Pervaiz, M.; Ahmad, I.; Yousaf, M.; Kirn, S.; Munawar, A.; Saeed, Z.; Adnan, A.; Gulzar, T.; Kamal, T.; Ahmad, A.; Rashid, A.: Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta A. 206 (2019) 642–649.10.1016/j.saa.2018.05.057Search in Google Scholar PubMed

18. Bernadette Amali, I.; Kesavan, M. P.; Vijayakumar, V.; Indra Gandhi, N.; Rajesh, J.; Rajagopal, G.: Structural analysis, antimicrobial and cytotoxic studies on new metal(II) complexes containing N2O2 donor Schiff base ligand. J. Mol. Struct. 1183 (2019) 342–350.10.1016/j.molstruc.2019.02.005Search in Google Scholar

19. Tai, X.; Yin, X.; Chen, Q.; Tan, M.: Synthesis of some transition metal complexes of a novel Schiff base ligand derived from 2, 2′-bis (p-methoxyphenylamine) and salicylicaldehyde. Molecules. 8 (2003) 439–443.10.3390/80500439Search in Google Scholar

20. Naeimi, H.; Safari, J.; Heidarnezhad, A.: Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine. Dyes Pigm. 73 (2007) 251–253.10.1016/j.dyepig.2005.12.009Search in Google Scholar

21. Pillai, R. R.; Karrouchi, K.; Fettach, S.; Armaković, S.; Armaković, S. J.; Brik, Y.; Taoufik, J.; Radi, S.; El Abbes Faouzi, M.; Ansar, M. H.: Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings. J. Mol. Struct. 1177 (2019) 47–54.10.1016/j.molstruc.2018.09.037Search in Google Scholar

22. Hine, J.; Yeh, C. Y.: Equilibrium in formation and conformational isomerization of imines derived from isobutyraldehyde and saturated aliphatic primary amines. J. Am. Chem. Soc. 89 (1967) 2669–2676.10.1021/ja00987a030Search in Google Scholar

23. Zhou, Y.; Liu, Q.; Lv, W.; Pang, Q.; Ben, R.; Qian, Y.; Zhao, J.: Indazolin-s-ylidene–N-Heterocyclic Carbene complexes of Rhodium, Palladium, and Gold: Synthesis, characterization, and catalytic hydration of alkynes. Organometallics. 32 (2013) 3753–3759.10.1021/om4002928Search in Google Scholar

24. Yeap, G.-Y.; Fun, H.-K.; Teo, S.-B.; Teoh, S.-G.: Structure of 2-1(4-Methylphenylimino)-methyl]-1-nitrobenzene. Acta Crystallogr. C48 (1992) 1898–1900.10.1107/S0108270192005997Search in Google Scholar

25. Umadevi, M.; Devaraj, S.; Kandaswamy, M.; Chakkaravarthi, G.; Manivannan, V.: 1-[2-(2,4-Dinitrobenzylideneamino)phenyl]-3-phenylthiourea. Acta Crystallogr. E65 (2009) o2447.10.1107/S1600536809035880Search in Google Scholar

26. Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.: Design, structural and spectroscopic elucidation of new nitroaromatic carboxylic acids and semicarbazones for the in vitro screening of anti-leishmanial activity. J. Mol. Struct. 1079 (2015) 298–306.10.1016/j.molstruc.2014.08.047Search in Google Scholar

27. Kawamoto, T.; Kushi, Y.: The effect of aromatic-aromatic interactions on the crystallization of helical nickel(II) complexes. Inorganica Chim. Acta. 282 (1998) 71–75.10.1016/S0020-1693(98)00195-9Search in Google Scholar

28. Aldoshin, S. M.; Chuev, I. I.; Kozina, O. A.: A study of the possibility of constructing a required crystal structure of nitrobenzilidene derivatives of o-amidoanilines by modifying their molecular structure. Mol. Cryst. Liq. Crys. 264 (1995) 215–226.10.1080/10587259508037315Search in Google Scholar

29. Glidewell, C.; Howie, R. A.; Low, J. N.; Skakle, J. M. S.; Wardell, S. M. S. V.; Wardell, J. L.: Nine isomeric nitrobenzylidene-iodoanilines: interplay of C-H⋯O hydrogen bonds, iodo⋯nitro interactions and aromatic [pi]⋯[pi] stacking interactions. Acta Crystallogr. B58 (2002) 864–876.10.1107/S0108768102009941Search in Google Scholar

30. Ferguson, G.; Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, J. L.: Solvent-dependent polymorphism in isomeric N-(nitrobenzylidene)iodoanilines. Acta Crystallogr. C61 (2005) o445–o449.10.1107/S0108270105016239Search in Google Scholar PubMed

31. Diko, N.; Zamisa, S. J.; Friedrich, H. B.; Shozi, M. L.: Crystal structure of (E)-N-(4-chlorophenyl)-1-(pyridin-2-yl)methanimine, C12H9ClN2. Z. Kristallogr. NCS 234 (2019) 1059–1061.10.1515/ncrs-2019-0260Search in Google Scholar

Received: 2020-01-17
Accepted: 2020-02-19
Published Online: 2020-04-16
Published in Print: 2020-06-25

©2020 Sulaiman A. Olagboye et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0034/html
Scroll to top button