Jump to ContentJump to Main Navigation

Opto-Electronics Review

4 Issues per year

IMPACT FACTOR increased in 2013: 1.279
Rank 118 out of 247 in category Electrical & Electronic Engineering in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.531
Source Normalized Impact per Paper (SNIP): 1.209


Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes

1Kyungpook National University

2Hongik University

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 14, Issue 3, Pages 233–241, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-006-0031-z, September 2006

Publication History

Published Online:


The light transmission through a dispersive plasmonic circular hole is numerically investigated with an emphasis on its subwavelength guidance. For a better understanding of the effect of the hole diameter on the guided dispersion characteristics, the guided modes, including both the surface plasmon polariton mode and the circular waveguide mode, are studied for several hole diameters, especially when the metal cladding has a plasmonic frequency dependency. A brief comparison is also made with the guided dispersion characteristics of a dispersive plasmonic gap [K.Y. Kim, et al., Opt. Express 14, 320–330 (2006)], which is a planar version of the present structure, and a circular waveguide with perfect electric conductor cladding. Finally, the modal behaviour of the first three TM-like principal modes with varied hole diameters is examined for the same operating mode.

Keywords: dispersion; dispersive plasmonic hole; subwavelength guidance; surface plasmon polariton; surface wave

  • [1] R.C. Dunn, “Near-field scanning optical microscopy”, Chem. Rev. 99, 2891–2927 (1999). http://dx.doi.org/10.1021/cr980130e [CrossRef]

  • [2] S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons”, in Near-Field Optics and Surface Plasmon Polaritons, pp. 15–27, edited by S. Kawata, Springer-Verlag, Berlin, 2001.

  • [3] H.A. Bethe, “Theory of diffraction by small holes”, Phys. Rev. 66, 163–182 (1944). http://dx.doi.org/10.1103/PhysRev.66.163 [CrossRef]

  • [4] N.A. Janunts, K.S. Baghdasaryan, K.V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip”, Opt. Commun. 253, 118–124 (2005). http://dx.doi.org/10.1016/j.optcom.2005.04.076 [CrossRef]

  • [5] L. Novotny, D.W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy”, Ultramicroscopy 61, 1–9 (1995). http://dx.doi.org/10.1016/0304-3991(95)00095-X [CrossRef]

  • [6] A. Lewis, E. Shambrot, A. Radko, K. Lieberman, S. Ezekiel, D. Veinger, and G. Yampolski, “Failure analysis of integrated circuits beyond the diffraction limit: Contact mode near-field scanning optical microscopy with integrated resistance, capacitance, and UV confocal imaging”, Proc. IEEE 88, 1471–1479 (2000). http://dx.doi.org/10.1109/5.883318 [CrossRef]

  • [7] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, and T.W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820–822 (2002). http://dx.doi.org/10.1126/science.1071895 [CrossRef]

  • [8] E. Popov, M. Nevière, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole”, Opt. Commun. 255, 338–348 (2005). http://dx.doi.org/10.1016/j.optcom.2005.06.010 [CrossRef]

  • [9] E. Popov, N. Bonod, M. Nevičre, H. Rigneault, P.F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet”, Appl. Opt. 44, 2332–2337 (2005). http://dx.doi.org/10.1364/AO.44.002332 [CrossRef]

  • [10] M.J. Lockyear, A.P. Hibbins, and J.R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate”, Phys. Rev. Lett. 94, 193902 (2005). [CrossRef]

  • [11] A. Moreau, G. Granet, F.I. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films”, Opt. Express 11, 1131–1136 (2003). http://dx.doi.org/10.1364/OE.11.001131 [CrossRef]

  • [12] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601–5603 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.5601 [CrossRef]

  • [13] F. Yang and J.R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit”, Phys. Rev. Lett. 89, 063901 (2002). [PubMed] [CrossRef]

  • [14] D.M. Pozar, Microwave Engineering, John Wiley & Sons, Inc. New York, 1998.

  • [15] M. Schmeits, “Surface-plasmon coupling in cylindrical pores”, Phys. Rev. B39, 7567–7577 (1989). [CrossRef]

  • [16] U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core”, Phys. Rev. B64, 125420 (2001). [CrossRef] [Web of Science]

  • [17] G.A. Farias, E.F. Nobre, R. Moretzsohn, N.S. Almeida, and M.G. Cottam, “Polaritons in hollow cylinders in the presence of a dc magnetic field”, J. Opt. Soc. Am. A19, 2449–2455 (2002). [CrossRef]

  • [18] A.V. Klyuchnik, S.Y. Kurganov, and Y.E. Lozovik, “Plasma optics of nanostructures”, Phys. Solid State 45, 1327–1331 (2003). http://dx.doi.org/10.1134/1.1594251 [CrossRef]

  • [19] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter”, Opt. Lett. 22, 475–477 (1997). [PubMed] [CrossRef]

  • [20] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4106 (1994). [CrossRef]

  • [21] B. Prade and J.Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Tech. 12, 6–18 (1994). http://dx.doi.org/10.1109/50.265728 [CrossRef]

  • [22] H.M. Shen, “Plasma waveguide: A concept to transfer electromagnetic energy in space”, J. Appl. Phys. 69, 6827–6835 (1991). http://dx.doi.org/10.1063/1.347672 [CrossRef]

  • [23] H.M. Shen and H.Y. Pao, “The plasma waveguide with a finite thickness of cladding”, J. Appl. Phys. 70, 6653–6662 (1991). http://dx.doi.org/10.1063/1.349837 [CrossRef]

  • [24] H. Shin, P.B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion on the transmission properties of subwavelength cylindrical hole”, Phys. Rev. B72, 085436 (2005). [CrossRef]

  • [25] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics”, Opt. Express 14, 320–330 (2006). http://dx.doi.org/10.1364/OPEX.14.000320 [CrossRef]

  • [26] M.M. Sigalas, C.T. Chan, K.M. Ho, and C.M. Soukoulis, “Metallic photonic band-gap materials”, Phys. Rev. B52, 11744–11751 (1995). [CrossRef]

  • [27] L.M. Li, Z.Q. Zhang, and X. Zhang, “Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials”, Phys. Rev. B58, 15589–15594 (1998). [CrossRef]

  • [28] X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens”, Phys. Rev. B70, 195110 (2004). [CrossRef]

  • [29] X. Zhang, “Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals”, Phys. Rev. B70, 205102 (2004). [CrossRef]

  • [30] X. Zhang, “Extraordinary transmissions on cylinder metallic gratings with very narrow slits”, Phys. Lett. A331, 252–257 (2004). [CrossRef]

  • [31] X. Zhang and L.M. Li, “Creating all-angle-negative refraction by using insertion”, Appl. Phys. Lett. 86, 121103 (2005). [CrossRef]

  • [32] X. Zhang, “Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystal-based flat lens”, Phys. Rev. B71, 165116 (2005). [CrossRef]

  • [33] X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal”, Phys. Rev. E71, 037601 (2005). [CrossRef]

  • [34] X. Zhang, “Tunable non-near-field focus and imaging of an unpolarized electromagnetic wave”, Phys. Rev. B71, 235103 (2005). [CrossRef]

  • [35] X. Zhang, “Active lens realized by two-dimensional photonic crystal”, Phys. Lett. A337, 457–462 (2005). [CrossRef]

  • [36] A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M.L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37, 5271–5283 (1998). http://dx.doi.org/10.1364/AO.37.005271 [CrossRef]

  • [37] C.A. Pfeiffer, E.N. Economou, and K.L. Ngai, “Surface polaritons in a circularly cylindrical interfaces: Surface plasmons”, Phys. Rev. B10, 3038–3051 (1974). [CrossRef]

  • [38] J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941.

  • [39] R. Gordon and A.G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal”, Opt. Express 13, 1933–1938 (2005). http://dx.doi.org/10.1364/OPEX.13.001933 [CrossRef]

  • [40] A. Kapoor and G.S. Singh, “Mode classification in cylindrical dielectric waveguides”, J. Lightwave Tech. 18, 849–852 (2000). http://dx.doi.org/10.1109/50.848397 [CrossRef]

  • [41] R.A. Waldron, “Theory and potential applications of backward waves in nonperiodic inhomogeneous waveguides”, Proc. IEE 111, 1659–1667 (1964).

  • [42] P.J.B. Clarricoats, “Circular-waveguide backward-wave structures”, Proc. IEE 110, 261–270 (1963).

Comments (0)

Please log in or register to comment.