Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 1, 2006

Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes

  • K. Kim EMAIL logo , Y. Cho , H. Tae and J. Lee
From the journal Opto-Electronics Review

Abstract

The light transmission through a dispersive plasmonic circular hole is numerically investigated with an emphasis on its subwavelength guidance. For a better understanding of the effect of the hole diameter on the guided dispersion characteristics, the guided modes, including both the surface plasmon polariton mode and the circular waveguide mode, are studied for several hole diameters, especially when the metal cladding has a plasmonic frequency dependency. A brief comparison is also made with the guided dispersion characteristics of a dispersive plasmonic gap [K.Y. Kim, et al., Opt. Express 14, 320–330 (2006)], which is a planar version of the present structure, and a circular waveguide with perfect electric conductor cladding. Finally, the modal behaviour of the first three TM-like principal modes with varied hole diameters is examined for the same operating mode.

[1] R.C. Dunn, “Near-field scanning optical microscopy”, Chem. Rev. 99, 2891–2927 (1999). http://dx.doi.org/10.1021/cr980130e10.1021/cr980130eSearch in Google Scholar

[2] S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons”, in Near-Field Optics and Surface Plasmon Polaritons, pp. 15–27, edited by S. Kawata, Springer-Verlag, Berlin, 2001. 10.1007/3-540-44552-8_2Search in Google Scholar

[3] H.A. Bethe, “Theory of diffraction by small holes”, Phys. Rev. 66, 163–182 (1944). http://dx.doi.org/10.1103/PhysRev.66.16310.1103/PhysRev.66.163Search in Google Scholar

[4] N.A. Janunts, K.S. Baghdasaryan, K.V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip”, Opt. Commun. 253, 118–124 (2005). http://dx.doi.org/10.1016/j.optcom.2005.04.07610.1016/j.optcom.2005.04.076Search in Google Scholar

[5] L. Novotny, D.W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy”, Ultramicroscopy 61, 1–9 (1995). http://dx.doi.org/10.1016/0304-3991(95)00095-X10.1016/0304-3991(95)00095-XSearch in Google Scholar

[6] A. Lewis, E. Shambrot, A. Radko, K. Lieberman, S. Ezekiel, D. Veinger, and G. Yampolski, “Failure analysis of integrated circuits beyond the diffraction limit: Contact mode near-field scanning optical microscopy with integrated resistance, capacitance, and UV confocal imaging”, Proc. IEEE 88, 1471–1479 (2000). http://dx.doi.org/10.1109/5.88331810.1109/5.883318Search in Google Scholar

[7] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, and T.W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820–822 (2002). http://dx.doi.org/10.1126/science.107189510.1126/science.1071895Search in Google Scholar PubMed

[8] E. Popov, M. Nevière, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole”, Opt. Commun. 255, 338–348 (2005). http://dx.doi.org/10.1016/j.optcom.2005.06.01010.1016/j.optcom.2005.06.010Search in Google Scholar

[9] E. Popov, N. Bonod, M. Nevičre, H. Rigneault, P.F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet”, Appl. Opt. 44, 2332–2337 (2005). http://dx.doi.org/10.1364/AO.44.00233210.1364/AO.44.002332Search in Google Scholar PubMed

[10] M.J. Lockyear, A.P. Hibbins, and J.R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate”, Phys. Rev. Lett. 94, 193902 (2005). Search in Google Scholar

[11] A. Moreau, G. Granet, F.I. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films”, Opt. Express 11, 1131–1136 (2003). http://dx.doi.org/10.1364/OE.11.00113110.1364/OE.11.001131Search in Google Scholar PubMed

[12] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601–5603 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.560110.1103/PhysRevLett.86.5601Search in Google Scholar PubMed

[13] F. Yang and J.R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit”, Phys. Rev. Lett. 89, 063901 (2002). Search in Google Scholar

[14] D.M. Pozar, Microwave Engineering, John Wiley & Sons, Inc. New York, 1998. Search in Google Scholar

[15] M. Schmeits, “Surface-plasmon coupling in cylindrical pores”, Phys. Rev. B39, 7567–7577 (1989). 10.1103/PhysRevB.39.7567Search in Google Scholar

[16] U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core”, Phys. Rev. B64, 125420 (2001). 10.1103/PhysRevB.64.125420Search in Google Scholar

[17] G.A. Farias, E.F. Nobre, R. Moretzsohn, N.S. Almeida, and M.G. Cottam, “Polaritons in hollow cylinders in the presence of a dc magnetic field”, J. Opt. Soc. Am. A19, 2449–2455 (2002). 10.1364/JOSAA.19.002449Search in Google Scholar PubMed

[18] A.V. Klyuchnik, S.Y. Kurganov, and Y.E. Lozovik, “Plasma optics of nanostructures”, Phys. Solid State 45, 1327–1331 (2003). http://dx.doi.org/10.1134/1.159425110.1134/1.1594251Search in Google Scholar

[19] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter”, Opt. Lett. 22, 475–477 (1997). Search in Google Scholar

[20] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4106 (1994). 10.1103/PhysRevE.50.4094Search in Google Scholar PubMed

[21] B. Prade and J.Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Tech. 12, 6–18 (1994). http://dx.doi.org/10.1109/50.26572810.1109/50.265728Search in Google Scholar

[22] H.M. Shen, “Plasma waveguide: A concept to transfer electromagnetic energy in space”, J. Appl. Phys. 69, 6827–6835 (1991). http://dx.doi.org/10.1063/1.34767210.1063/1.347672Search in Google Scholar

[23] H.M. Shen and H.Y. Pao, “The plasma waveguide with a finite thickness of cladding”, J. Appl. Phys. 70, 6653–6662 (1991). http://dx.doi.org/10.1063/1.34983710.1063/1.349837Search in Google Scholar

[24] H. Shin, P.B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion on the transmission properties of subwavelength cylindrical hole”, Phys. Rev. B72, 085436 (2005). 10.1103/PhysRevB.72.085436Search in Google Scholar

[25] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics”, Opt. Express 14, 320–330 (2006). http://dx.doi.org/10.1364/OPEX.14.00032010.1364/OPEX.14.000320Search in Google Scholar PubMed

[26] M.M. Sigalas, C.T. Chan, K.M. Ho, and C.M. Soukoulis, “Metallic photonic band-gap materials”, Phys. Rev. B52, 11744–11751 (1995). 10.1103/PhysRevB.52.11744Search in Google Scholar PubMed

[27] L.M. Li, Z.Q. Zhang, and X. Zhang, “Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials”, Phys. Rev. B58, 15589–15594 (1998). 10.1103/PhysRevB.58.15589Search in Google Scholar

[28] X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens”, Phys. Rev. B70, 195110 (2004). 10.1103/PhysRevB.70.195110Search in Google Scholar

[29] X. Zhang, “Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals”, Phys. Rev. B70, 205102 (2004). 10.1103/PhysRevB.70.205102Search in Google Scholar

[30] X. Zhang, “Extraordinary transmissions on cylinder metallic gratings with very narrow slits”, Phys. Lett. A331, 252–257 (2004). 10.1016/j.physleta.2004.07.072Search in Google Scholar

[31] X. Zhang and L.M. Li, “Creating all-angle-negative refraction by using insertion”, Appl. Phys. Lett. 86, 121103 (2005). Search in Google Scholar

[32] X. Zhang, “Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystal-based flat lens”, Phys. Rev. B71, 165116 (2005). 10.1103/PhysRevB.71.165116Search in Google Scholar

[33] X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal”, Phys. Rev. E71, 037601 (2005). 10.1103/PhysRevE.71.037601Search in Google Scholar PubMed

[34] X. Zhang, “Tunable non-near-field focus and imaging of an unpolarized electromagnetic wave”, Phys. Rev. B71, 235103 (2005). 10.1103/PhysRevB.71.235103Search in Google Scholar

[35] X. Zhang, “Active lens realized by two-dimensional photonic crystal”, Phys. Lett. A337, 457–462 (2005). 10.1016/j.physleta.2005.01.073Search in Google Scholar

[36] A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M.L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37, 5271–5283 (1998). http://dx.doi.org/10.1364/AO.37.00527110.1364/AO.37.005271Search in Google Scholar PubMed

[37] C.A. Pfeiffer, E.N. Economou, and K.L. Ngai, “Surface polaritons in a circularly cylindrical interfaces: Surface plasmons”, Phys. Rev. B10, 3038–3051 (1974). Search in Google Scholar

[38] J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941. Search in Google Scholar

[39] R. Gordon and A.G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal”, Opt. Express 13, 1933–1938 (2005). http://dx.doi.org/10.1364/OPEX.13.00193310.1364/OPEX.13.001933Search in Google Scholar PubMed

[40] A. Kapoor and G.S. Singh, “Mode classification in cylindrical dielectric waveguides”, J. Lightwave Tech. 18, 849–852 (2000). http://dx.doi.org/10.1109/50.84839710.1109/50.848397Search in Google Scholar

[41] R.A. Waldron, “Theory and potential applications of backward waves in nonperiodic inhomogeneous waveguides”, Proc. IEE 111, 1659–1667 (1964). Search in Google Scholar

[42] P.J.B. Clarricoats, “Circular-waveguide backward-wave structures”, Proc. IEE 110, 261–270 (1963). Search in Google Scholar

Published Online: 2006-9-1
Published in Print: 2006-9-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0031-z/html
Scroll to top button