Jump to ContentJump to Main Navigation

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

IMPACT FACTOR increased in 2014: 1.667
Rank 90 out of 249 in category Electrical & Electronic Engineering, 38 out of 86 in Optics and 67 out of 143 in Applied Physics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.653
Source Normalized Impact per Paper (SNIP) 2014: 1.272
Impact per Publication (IPP) 2014: 1.413


Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers

1Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warsaw, Poland

2Institute of Chemistry Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland

© 2007 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 15, Issue 1, Pages 27–31, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-006-0051-8, March 2007

Publication History

Published Online:


In this paper we present numerical and experimental results of propagation and polarization properties of the photonic liquid crystal fibers (PLCFs) in which only selected micro holes were filled with nematic liquid crystal (LC) guest materials. As a host photonic crystal fiber (PCF) structure, we used a commercially available highly birefringent PCF (Blazephotonics, UK). A tunable laser operated at infrared has powered the PLCFs under investigation infiltrated by the 1550 nematic LC synthesized at the Military University of Technology. Temperature induced changes of the polarization mode dispersion (PMD) as well switching between fundamental and higher order modes and also single-core and two-core propagation were successfully demonstrated.

Keywords: photonics crystal fibers; liquid crystals; polarization mode dispersion; birefringence

  • [1] T.R. Woliński, ”Polarimetric optical fibers and sensors”, in Progress in Optics, Vol. XL, pp. 1–75, edited by Emil Wolf, North-Holland, Amsterdam, 2000.

  • [2] T.R. Woliński, ”Polarization phenomena in optical systems”, in Encyclopedia of Optical Engineering, pp. 2150–2175, edited by R.G. Diggers, Marcel Dekker Inc., New York, 2003.

  • [3] T.R. Woliński P. Lesiak, R. Dąbrowski, J. Kędzierski, and E. Nowinowski, “Polarization mode dispersion in all elliptical liquid crystal-core fiber”, Mol. Cryst. Liq. Cryst. 421, 175–186 (2004). http://dx.doi.org/10.1080/15421400490501770 [CrossRef]

  • [4] T.T. Larsen, A. Bjarklev, D.S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap”, Optics Express 11, 2589–2596 (2003). http://dx.doi.org/10.1364/OE.11.002589 [CrossRef]

  • [5] T.R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, A.W. Domański, R. Dąbrowski, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals”, Opto-Electron. Rev. 13, 59–64 (2005).

  • [6] F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber”, Appl. Phys. Lett. 85, 2181–2183 (2004). http://dx.doi.org/10.1063/1.1796533 [CrossRef]

  • [7] T.R. Woliński, P. Lesiak, A.W. Domański, K. Szaniawska, S. Ertman, R. Dąbrowski, and J. Wójcik, “Polartization optics of microstructured liquid crystal fibers”, 11 th Int. Conf. Optics of Liquid Crystals, Florida, 2–7 Oct., 2005 (invited paper), Mol. Cryst. Liq. Cryst. 2006 (accepted).

  • [8] J.C. Knight, ”Photonic crystal fibers”, Nature 424, 847–851 (2003). http://dx.doi.org/10.1038/nature01940 [CrossRef]

  • [9] J.C. Knight, T. Birks, B. Mangan, and P. Russell, ”Photonic crystal fibers: new solutions in fiber optics”, Optics and Photonics News 13, 26–30 (2002). http://dx.doi.org/10.1364/OPN.13.3.000026 [CrossRef]

  • [10] R. Buczyński, ”Photonic crystal fibers”, Acta Physica Polonica A 106, 141–167 (2004).

  • [11] J.A. Reyes-Cervantes, J.A. Reyes-Avendano, and P. Halevi, ”Electrical tuning of a photronic crystal infilled with a liquid crystal”, Proc. SPIE 5511, 50–60 (2004).

  • [12] C.L. Xu, W-P. Huang, M. Stern, and S.K. Chaudhuri, ”Full vectorial mode calculation by finite-difference method”, IEEE Proc. Pt. J: Optoelectron. 141, 281–286 (1994). http://dx.doi.org/10.1049/ip-opt:19941419 [CrossRef]

  • [13] W.J. Bock, A.W. Domański, and T.R. Woliński, ”Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers”, Appl. Optics 29, 3484 (1990). http://dx.doi.org/10.1364/AO.29.003484 [CrossRef]

  • [14] J. Schirmer, P. Kohns, A. Muravski, S. Yakovenko, V. Bezborodov, R. Dabrowski, and P. Adomenas, ”Birefringence and refractive indices dispersion of different liquid crystalline structures”, Mol. Crys. Liq. Crys. 307, 17–42 (1997).

  • [15] T.R. Woliński and A.W. Domański, “Polarization mode dispersion in birefringent optical fibers”, Acta Physica Polonica A 103, 211–219 (2003).

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tomasz R. Woliński, Marzena M. Tefelska, Miłosz S. Chychłowski, Karol Godyń, Roman Dąbrowski, Jan Wójcik, Tomasz Nasiłowski, and Hugo Thienpont
Molecular Crystals and Liquid Crystals, 2009, Volume 502, Number 1, Page 220
Thomas Tanggaard Alkeskjold, Lara Scolari, Danny Noordegraaf, Jesper Lægsgaard, Johannes Weirich, Lei Wei, Giovanni Tartarini, Paolo Bassi, Sebastian Gauza, Shin-Tson Wu, and Anders Bjarklev
Optical and Quantum Electronics, 2007, Volume 39, Number 12-13, Page 1009

Comments (0)

Please log in or register to comment.