Jump to ContentJump to Main Navigation

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

IMPACT FACTOR increased in 2014: 1.667
Rank 90 out of 249 in category Electrical & Electronic Engineering, 38 out of 86 in Optics and 67 out of 143 in Applied Physics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.653
Source Normalized Impact per Paper (SNIP) 2014: 1.272
Impact per Publication (IPP) 2014: 1.413


Optimal period for diffraction gratings recorded in polymer dispersed liquid crystals

1Department of Physics, Yerevan State University, 1 Manougyan Str., 375049, Yerevan, Armenia

© 2007 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 15, Issue 1, Pages 66–70, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-006-0058-1, March 2007

Publication History

Published Online:


New diffusion model of recording diffraction gratings in the media of PDLC is described in which besides diffusion of monomer molecules also diffusion of polymer molecules and non-locality of diffusion coefficient are taken into account. It lets us to explain why diffraction efficiency is low for low and high values of intensities of grating recording beam. With the considered model, we have theoretically got optimal period for grating recording.

Keywords: liquid crystal; polymer; grating; diffraction

  • [1] P. Pilot, Y.B. Boiko, and T.V. Galstian, “Near-IR (800–855 nm) sensitive holographic photopolymer dispersed liquid crystal materials”, Proc. SPIE 3635, 143–150 (1999).

  • [2] P. Nagtegaele and T.V. Galstian, “Holographic characterization of near infrared photopolymerizable materials”, Synthetic Metals 127, 85–87 (2002). http://dx.doi.org/10.1016/S0379-6779(01)00601-4 [CrossRef]

  • [3] R. Kaputo, A. Sukhov, C. Umeton, and R. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures”, JETP 118, 1374–1383 (2000).

  • [4] R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, T.J. Bunning, and W.W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film”, Opt. Lett. 20, 1325 (1995). http://dx.doi.org/10.1364/OL.20.001325 [CrossRef]

  • [5] I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth”, J. Mod. Opt. 45, 1465–1477 (1998). http://dx.doi.org/10.1080/095003498151140 [CrossRef]

  • [6] F. Roussel and B. Fung, “Anchoring behaviour, orientational order, and reorientation dynamics of nematic liquid crystal droplets dispersed in cross-linked polymer networks droplets dispersed in cross-linked polymer networks”, Phys. Rev. E67, 041709.1-041709.4 (2003).

  • [7] Y.H. Fan, H. Ren, and S.T. Wu, “Switchable fresnel lens using polymer-stabilised liquid crystals”, Optics Express 11, 3080–3086 (2003). http://dx.doi.org/10.1364/OE.11.003080 [CrossRef]

  • [8] G. Zhao and P. Mouroulis, “Extension of a diffusion model for holographic photopolymers”, J. Mod. Opt. 41, 1929–2573 (1994). [CrossRef]

  • [9] J.T. Sheridan and J.R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. 17, 1108 (2000). [CrossRef]

  • [10] D. Duca, A.V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing”, Liquid Crystals 26, 931–937 (1999). http://dx.doi.org/10.1080/026782999204633 [CrossRef]

  • [11] J.T. Sheridan, T.O. Neill, and J.V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model”, J. Opt. Soc. Am. B21, 1443–1451 (2004). http://dx.doi.org/10.1364/JOSAB.21.001443 [CrossRef]

  • [12] S. Gallego, M. Ortuno, C. Neipp, I. Pascual, J.V. Kelly, and J.T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories”, Optics Express 13, 3543–3557 (2005). http://dx.doi.org/10.1364/OPEX.13.003543 [CrossRef]

  • [13] J.R. Lawrence, F.T. O’Neill, and J.T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation”, J. Opt. Soc. Am. B19, 621–629 (2002). [CrossRef]

  • [14] S.D. Wu and E.N. Glytsis, “Holographic grating formation in photopolymers: analysis an experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis”, J. Opt. Soc. Am. 20, 1177–1187 (2003). [CrossRef]

  • [15] R.S. Akopyan, A.L. Aslanyan, and A.V. Galstyan, “About not monotonous hologram diffraction efficiency dependence in photopolymeric materials on average intensity of the writing laser”, J. Contemp. Phys. 39, 327–330 (2004).

  • [16] H. Kogelnik, “Coupled wave theory for thick holographic gratings”, Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Y. J. Liu and X. W. Sun
Advances in OptoElectronics, 2008, Volume 2008, Page 1
Michael R Gleeson and John T Sheridan
Journal of Optics A: Pure and Applied Optics, 2009, Volume 11, Number 2, Page 024008

Comments (0)

Please log in or register to comment.