Jump to ContentJump to Main Navigation

Opto-Electronics Review

4 Issues per year


IMPACT FACTOR increased in 2014: 1.667
Rank 90 out of 249 in category Electrical & Electronic Engineering, 38 out of 86 in Optics and 67 out of 143 in Applied Physics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.653
Source Normalized Impact per Paper (SNIP) 2014: 1.272
Impact per Publication (IPP) 2014: 1.413

VolumeIssuePage

External cavity wavelength tunable semiconductor lasers - a review

1Institute of Electron Technology, 32/46 Lotników Ave., 02-668, Warsaw, Poland

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 16, Issue 4, Pages 347–366, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-008-0045-9, September 2008

Publication History

Published Online:
2008-09-27

Abstract

External cavity tunable lasers have been around for many years and now constitute a large group of semiconductor lasers featuring very unique properties. The present review has been restricted to the systems based on the edge emitting diode lasers set-up in a hybrid configuration. The aim was to make the paper as concise as possible without sacrificing, however, most important details. We start with short description of the fundamentals essential for operation of the external cavity lasers to set the stage for explanation of their properties and some typical designs. Then, semiconductor optical amplifiers used in the external cavity lasers are highlighted more in detail as well as diffraction gratings and other types of wavelength-selective reflectors used to provide optical feedback in these lasers. This is followed by a survey of designs and properties of various external cavity lasers both with mobile bulk gratings and with fixed wavelength selective mirrors. The paper closes with description of some recent developments in the field to show prospects for further progress directed towards miniaturization and integration of the external cavity laser components used so far to set-up hybrid systems.

Keywords: tunable lasers; external cavity; optical amplifiers; wavelength selective mirrors

  • [1] T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging”, Electron. Lett. 37, 1461–1463 (2001). http://dx.doi.org/10.1049/el:20011003 [CrossRef]

  • [2] C.S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I.C. Mayorga, A. Klehr, G. Erbert, and M.R. Hofmann, “New two-colour laser concepts for THz generation”, IEEE J. Sel. Top. Quant. 14, 270–275 (2008). http://dx.doi.org/10.1109/JSTQE.2007.912754 [CrossRef]

  • [3] L. Gasman, “Device development will tackle video traffic jam”, Fibre Systems Europe, June, 2007.

  • [4] T. Morikawa, Y. Mitsuhashi, and J. Shimada, “Return-beam induced oscillations in self-coupled semiconductor lasers”, Electron. Lett. 12, 435–436 (1976). http://dx.doi.org/10.1049/el:19760331 [CrossRef]

  • [5] V. Jayaraman, Z.M Chuang, and L.A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings”, IEEE J. Quantum Elect. 29, 1824–1834 (1993). http://dx.doi.org/10.1109/3.234440 [CrossRef]

  • [6] Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, and Y. Kondo, “Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers”, Electron. Lett. 29, 352–354 (1993). http://dx.doi.org/10.1049/el:19930238 [CrossRef]

  • [7] J. Hong, H. Kim F. Shepard, C. Rogers, B. Baulcomb, and S. Clements, “Matrix-grating strongly gain-coupled (MG-SGC) DFB lasers with #4-nm continuous wavelength tuning range”, IEEE Photonic. Techn. L. 11, 515–517 (1999). http://dx.doi.org/10.1109/68.759383 [CrossRef]

  • [8] P.J. Rigole, S. Nilsson, L. Backbom, B. Stalnacke, E. Berglind, J.P. Weber, and B. Stoltz, “Quasi-continuous tuning range from 1560 to 1520 nm in a GCSR laser, with high power and low tuning currents”, Electron. Lett. 32, 2352–2354 (1996). http://dx.doi.org/10.1049/el:19961540 [CrossRef]

  • [9] A. Wicht, M. Rudolf, P. Huke, R.H. Rinkleff, and K. Danzmann, “Grating enhanced external cavity laser”, Appl. Phys. B78, 305–313 (2003).

  • [10] A.D. White, “Reflecting prisms for dispersive optical maser cavities”, Appl. Optics 3, 431–432 (1964). [CrossRef]

  • [11] T.W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy”, Appl. Optics 11, 895–898 (1972). [CrossRef]

  • [12] M.G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser”, Opt. Lett. 3, 138–140 (1978). [CrossRef]

  • [13] L. Ménager, L. Cabaret, I. Lorgeré, and J.L. Le Gouët, “Diode laser extended cavity for broad-range fast ramping”, Opt. Lett. 25, 1246–1248 (2000). http://dx.doi.org/10.1364/OL.25.001246 [CrossRef]

  • [14] L. Levin, “Mode-hop-free electro-optically tuned diode laser”, Opt. Lett. 27, 237–239 (2002). http://dx.doi.org/10.1364/OL.27.000237 [CrossRef]

  • [15] G.A. Coquin and K.W. Cheung, “Electronically tunable external-cavity semiconductor laser”, Electron. Lett. 24, 599–600 (1988). http://dx.doi.org/10.1049/el:19880406 [CrossRef]

  • [16] K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter”, Electron. Lett. 40, 1187–1188 (2004). http://dx.doi.org/10.1049/el:20046089 [CrossRef]

  • [17] J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror”, IEEE Photonic. Techn. L. 17, 681–683 (2005). http://dx.doi.org/10.1109/LPT.2004.842381 [CrossRef]

  • [18] T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems”, IEEE Photonic. Techn. L. 14, 1001–1003 (2002). http://dx.doi.org/10.1109/LPT.2002.1012412 [CrossRef]

  • [19] V. Crozatier, B.K. Das, G. Baili, G. Gorju, F. Bretenaker, J.L. Le Gouët, I. Lorgeré, and W. Kohler, “Highly coherent electronically tunable waveguide extended cavity diode laser”, IEEE Photonic. Techn. L. 18, 1527–1529 (2006). http://dx.doi.org/10.1109/LPT.2006.877549 [CrossRef]

  • [20] I.H. White, K.O. Nyairo, P.A. Kirkby, and C.J. Armistead, “Demonstration of a 1×2 multichannel grating cavity laser for wavelength division multiplexing (WDM) applications”, Electron. Lett. 26, 832–834 (1990). http://dx.doi.org/10.1049/el:19900546 [CrossRef]

  • [21] I.H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications”, J. Lightwave Technol. 9, 893–899 (1991). http://dx.doi.org/10.1109/50.85791 [CrossRef]

  • [22] J.B.D. Soole, A. Scherer, H.P. LeBlanc, N.C. Andreadakis, R. Bhat, and M.A. Koza, “Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48-1.56 μm wavelength range”, Appl. Phys. Lett. 58, 1949–1951 (1991). http://dx.doi.org/10.1063/1.105028 [CrossRef]

  • [23] O.K. Kwon, K.H. Kim, E.D. Sim, J.H. Kim, and K.R. Oh, “Monolithically integrated multiwavelength grating cavity laser”, IEEE Photonic. Techn. L. 17, 1788–1790 (2005). http://dx.doi.org/10.1109/LPT.2005.853009 [CrossRef]

  • [24] Y. Arakawa and A. Yariv, “Quantum well lasers-gain, spectra, dynamics”, IEEE J. Quantum Elect. QE-22, 1887–1899 (1986). http://dx.doi.org/10.1109/JQE.1986.1073185 [CrossRef]

  • [25] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Elect. QE-16, 347–355 (1980). http://dx.doi.org/10.1109/JQE.1980.1070479 [CrossRef]

  • [26] M. Bagley, R. Wyatt, D.J. Elton, H.J. Wickes, P.C. Spurdens, C.P. Seltzer, D.M. Cooper, and W.J. Devlin, “242 nm continuous tuning from a GRIN-SCH-MQW-BH InGaAsP laser in an extended cavity”, Electron. Lett. 26, 267–269 (1990). http://dx.doi.org/10.1049/el:19900178

  • [27] A.S. Arnold, J.S. Wilson, and M.G. Boshier, “A simple extended-cavity diode laser”, Rev. Sci. Instrum. 69, 1236–1239 (1998). http://dx.doi.org/10.1063/1.1148756 [CrossRef]

  • [28] K.C. Harvey and C.J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating”, Opt. Lett. 16, 910–912 (1991). http://dx.doi.org/10.1364/OL.16.000910 [CrossRef]

  • [29] J.E. Epler, G.S. Jackson, N. Holonyak, Jr., R.L. Thornton, R.D. Burnham, and T.L. Paoli, “Broadband operation of coupled-stripe multiple quantum well AlGaAs laser diodes”, Appl. Phys. Lett. 47, 779–780 (1985). http://dx.doi.org/10.1063/1.96035 [CrossRef]

  • [30] D.C. Hall, J.S. Major, Jr., N. Holonyak, Jr., P. Gavrilovic, K. Meehan, W. Stutius, and J.E. Williams, “Broadband long-wavelength operation (9700 Å ≥ λ ≥ 8700 Å) of AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers in an external grating cavity”, Appl. Phys. Lett. 55, 752–754 (1989). http://dx.doi.org/10.1063/1.101796 [CrossRef]

  • [31] M. Mittelstein, D. Mehuys, and A. Yariv, “Broadband tunability of gain-flattened quantum well semiconductor lasers with an external grating”, Appl. Phys. Lett. 54, 1092–1094 (1989). http://dx.doi.org/10.1063/1.100767 [CrossRef]

  • [32] A. Lidgard, T. Tanbun-Ek, R.A. Logan, H. Temkin, K.W. Wecht, and N.A. Olsson, “External-cavity InGaAs/InP graded index multiquantum well laser with a 200 nm tuning range”, Appl. Phys. Lett. 56, 816–817 (1990). http://dx.doi.org/10.1063/1.102672 [CrossRef]

  • [33] C.P. Seltzer, M. Bagley, D.J. Elton, S. Perrin, and D.M Cooper, “160-nm continuous tuning of an MQW laser in the external cavity across the entire 1.3 μm communications window”, Electron. Lett. 27, 95–96 (1991). http://dx.doi.org/10.1049/el:19910060 [CrossRef]

  • [34] J.N. Walpole, E.S. Kintzer, S.R. Chinn, C.A. Wang, and L.J. Missaggia, “High-power strained-layer InGaAs/AlGaAs tapered travelling wave amplifier”, Appl. Phys. Lett. 61, 740–742 (1992). http://dx.doi.org/10.1063/1.107783 [CrossRef]

  • [35] C.F. Lin, Y.S. Su, and B.R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication”, IEEE Photonic. Tech. L. 14, 3–5 (2002). http://dx.doi.org/10.1109/68.974142 [CrossRef]

  • [36] H.S. Gingrich, D.R. Chumney, S.Z. Sun, S.D. Hersee, L.F. Lester, and S.R.J. Brueck, “Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells”, IEEE Photonic. Techn. L. 9, 155–157 (1997). http://dx.doi.org/10.1109/68.553070 [CrossRef]

  • [37] L. Goldberg, D. Mehuys, and D.C. Hall, “3.3 W CW diffraction limited broad area semiconductor amplifier”, Electron. Lett. 28, 1082–1084 (1992). http://dx.doi.org/10.1049/el:19920684 [CrossRef]

  • [38] D. Mehuys, D. Welsh, and D. Scigres, “1 W CW, diffraction-limited, tunable external-cavity semiconductor laser”, Electron. Lett. 29, 1254–1255 (1993). http://dx.doi.org/10.1049/el:19930838 [CrossRef]

  • [39] D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, and H. Welling, “Continously tunable 0.5 W single-frequency diode laser source”, Opt. Commun. 148, 261–264 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00696-2 [CrossRef]

  • [40] S. Stry, L. Hildebrandt, J. Sacher, Ch. Buggle, M. Kemmann, and W. von Klitzing “Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping”, e-mail: sandra.stry@sacher-laser.com

  • [41] R.J. Jones, S. Gupta, R.K. Jain, and J.N. Walpole, “Near-diffraction-limited high power (∼1 W) single longitudinal mode CW diode laser tunable from 960 to 980 nm”, Electron. Lett. 31, 1668–1669 (1995). http://dx.doi.org/10.1049/el:19951147 [CrossRef]

  • [42] M. Notomi, O. Mitomi, Y. Yoshikuni, F. Kano, and Y. Tohmori, “Broad-band tunable two-section laser diode with external grating feedback”, IEEE Photonic. Techn. L. 2, 85–87 (1990). http://dx.doi.org/10.1109/68.47055 [CrossRef]

  • [43] J. De Merlier, K. Mizutani, S. Sudo, K. Sato, and K. Kudo, “Wavelength channel accuracy of an external cavity wavelength tunable laser with intracavity wavelength reference etalon”, J. Lightwave Technol. 24, 3202–3209 (2006). http://dx.doi.org/10.1109/JLT.2006.876338 [CrossRef]

  • [44] A. Lohman, and R.R.A. Syms, “External cavity laser with a vertically etched silicon blazed grating”, IEEE Photonic. Techn. L. 15, 120–122 (2003). http://dx.doi.org/10.1109/LPT.2002.805762 [CrossRef]

  • [45] E.G. Loewen, M. Neviere, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings”, Appl. Optics 16, 2711–2721 (1977). [CrossRef]

  • [46] R.R.A. Syms, A. Lohman, “MOEMS tuning element for a littrow external cavity laser”, J. Microelectromech. Syst. 12, 921–928 (2003). http://dx.doi.org/10.1109/JMEMS.2003.820269 [CrossRef]

  • [47] M.C. Hutley, Diffraction Gratings, Academic Press Ltd., London, 1990.

  • [48] B. Mroziewicz, T. Piwoński, E. Kowalczyk, A. Szerling, and S.J. Lewandowski, “External cavity diode lasers with ridge-waveguide type broad contact semiconductor optical amplifiers”, Proc. SPIE 5958, J1–J8 (2005).

  • [49] B. Mroziewicz, E. Kowalczyk, L. Dobrzański, J. Ratajczak, and S.J. Lewandowski, “External cavity diode lasers with E-beam written silicon diffraction gratings”, Opt. Quant. Electron. 39, 585–595 (2007). http://dx.doi.org/10.1007/s11082-007-9111-7 [CrossRef]

  • [50] D. Rosenblatt, A. Sharon, and A.A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Elect. 33, 2038–2059 (1997). http://dx.doi.org/10.1109/3.641320 [CrossRef]

  • [51] A.S.P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S.Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror”, IEEE Photonic. Techn. L. 19, 1099–1101 (2007). http://dx.doi.org/10.1109/LPT.2007.899437 [CrossRef]

  • [52] S. Block, E. Gamet, and F. Pigeon, “Semiconductor laser with external resonant grating mirror”, IEEE J. Quantum Elect. 41, 1049–1053 (2005). http://dx.doi.org/10.1109/JQE.2005.851248 [CrossRef]

  • [53] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114–3116 (1995). http://dx.doi.org/10.1063/1.114851 [CrossRef]

  • [54] I. Avrutsky and R. Rabady, “Waveguide grating mirror for large-area semiconductor lasers”, Opt. Lett. 26, 989–991 (2001). http://dx.doi.org/10.1364/OL.26.000989 [CrossRef]

  • [55] S.S. Wang and R. Magnusson, “Multilayer waveguide-grating filters”, Appl. Optics 34, 2414–2420 (1995). http://dx.doi.org/10.1364/AO.34.002414 [CrossRef]

  • [56] M.G. Littman and H.J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander”, Appl. Optics 17, 2224–2227 (1978). [CrossRef]

  • [57] P. McNicholl and H.J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings”, Appl. Optics 24, 2757–2761 (1985). [CrossRef]

  • [58] F. Favre, D. Le Guen, J.C. Simon, and B. Landousies, “External-cavity semiconductor laser with 15 nm continuous tuning range”, Electron. Lett. 22, 795–796 (1986). http://dx.doi.org/10.1049/el:19860545 [CrossRef]

  • [59] F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser”, Electron. Lett. 27, 183–184 (1991). http://dx.doi.org/10.1049/el:19910117 [CrossRef]

  • [60] H. Tabuchi and H. Ishikawa, “External grating tunable MWQ laser with wide tuning range of 240 nm”, Electron. Lett. 26, 742–743 (1990). http://dx.doi.org/10.1049/el:19900484 [CrossRef]

  • [61] D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm”, Optics Commun. 130, 81–84 (1996). http://dx.doi.org/10.1016/0030-4018(96)00171-X

  • [62] K. Liu and M.G. Littman, “Novel geometry for single-mode scanning of tunable lasers”, Opt. Lett. 6, 117–118 (1981). [CrossRef]

  • [63] L. Nilse, H.J. Davies, and C.S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point”, Appl. Optics 38, 548–553 (1999). http://dx.doi.org/10.1364/AO.38.000548 [CrossRef]

  • [64] M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers”, Appl. Optics 32, 269–274 (1993)

  • [65] W.R. Trutna and L.F. Stokes, “Continuously tuned external cavity semiconductor laser”, J. Lightwave Technol. 11, 1279–1286 (1993). http://dx.doi.org/10.1109/50.254086 [CrossRef]

  • [66] T.M. Hard, “Laser wavelength selection and output coupling by a grating”, Appl. Optics 9, 1825–1830 (1990).

  • [67] C.J. Hawthorn, K.P. Weber, and R.E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam”, Rev. Sci. Instrum. 72, 4477–4479 (2001). http://dx.doi.org/10.1063/1.1419217 [CrossRef]

  • [68] D. Wandt, M. Laschek, A. Tunnermann, and H. Welling, “Continuously tunable external-cavity diode laser with a double-grating arrangement”, Opt. Lett. 22, 390–392 (1997). http://dx.doi.org/10.1364/OL.22.000390 [CrossRef]

  • [69] J.H. Lee, M.Y. Park, Ch.Y. Kim, S.H. Cho, W. Lee, G. Jeong, and B.W. Kim, “Tunable external cavity laser based on polymer waveguide platform for WDM access network”, IEEE Photonic. Techn. L. 17, 1529–1956 (2005).

  • [70] M.C. Oh, H.J. Lee, M.H. Lee, J.H. Ahn, S.G. Han, and H.G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides”, Appl. Phys. Lett. 73, 2543–2545 (1998). http://dx.doi.org/10.1063/1.122527 [CrossRef]

  • [71] A. Andalkar, S.K. Lamoreaux, and R.B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser”, Rev. Sci. Instrum. 71, 4029–4031 (2000). http://dx.doi.org/10.1063/1.1319860 [CrossRef]

  • [72] L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy”, Appl. Optics 42, 2110–2118 (2003). http://dx.doi.org/10.1364/AO.42.002110 [CrossRef]

  • [73] D.J. Lonsdale, A.P. Willis, and T.A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity”, Meas. Sci. Technol. 13, 488–493 (2002).

  • [74] R. Wyatt and W.J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range”, Electron. Lett. 19, 110–112 (1983). http://dx.doi.org/10.1049/el:19830079 [CrossRef]

  • [75] R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback”, Electron. Lett. 21, 658–659 (1985). http://dx.doi.org/10.1049/el:19850467 [CrossRef]

  • [76] J. Mellis, S.A. Al-Chalabi, K.H. Cameron, R. Wyatt, J.C. Regnault, W.J. Devlin, and M.C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range”, Electron. Lett. 24, 988–989 (1988). http://dx.doi.org/10.1049/el:19880672 [CrossRef]

  • [77] A.T. Schremer and C.L. Tang, “External-cavity semiconductor laser with 1000 GHz continuous piezoelectric tuning range”, IEEE Photonic. Techn. L. 2, 3.5 (1990).

  • [78] C. Petridis, I.D. Lindsay, D.J.M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating”, Rev. Sci. Instrum. 72, 3811–3815 (2001). http://dx.doi.org/10.1063/1.1405783 [CrossRef]

  • [79] E. Ip, J.M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications”, IEEE Photonic. Techn. L. 17, 2029–2031 (2005). http://dx.doi.org/10.1109/LPT.2005.856435 [CrossRef]

  • [80] K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, “A compact external cavity wavelength tunable laser without an intracavity etalon”, IEEE Photonic. Techn. L. 18, 1191–1193 (2006). http://dx.doi.org/10.1109/LPT.2006.874717 [CrossRef]

  • [81] U.H. Jacobs, K. Scholle, E. Heumann, G. Huber, M. Rattunde, and J. Wagner, “Room-temperature external cavity GaSb-based diode laser around 2.13 μm”, Appl. Phys. Lett. 85, 5825–5826 (2004). http://dx.doi.org/10.1063/1.1833561 [CrossRef]

  • [82] E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm”, IEEE Photonic. Techn. L. 18, 1913–1915 (2006). http://dx.doi.org/10.1109/LPT.2006.881658 [CrossRef]

  • [83] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubaman, R.M. Wiliams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.L. Cho, A.M. Sergent, H.C. Liu, and E.A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission”, IEEE J. Quantum Elect. 38, 511–532 (2002). http://dx.doi.org/10.1109/JQE.2002.1005403 [CrossRef]

  • [84] L. Hildebrandt, S. Stry, R. Knispel, J.R. Sacher, T. Beyer, M. Braun, A. Lambrecht, T. Gensty, W. Elsasser, Ch. Mann, and F. Fuchs, “Quantum cascade external cavity and DFB laser systems in the mid-infrared spectral range: devices and applications”, e-mail: lars@sacher-laser.com

  • [85] G.P. Luo, C. Peng, H.Q. Le, S.S. Pei, W.Y. Hwang, B. Ishaug, J. Um, J.N. Baillargeon, and C.H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers”, Appl. Phys. Lett. 78, 2834–2836 (2001). http://dx.doi.org/10.1063/1.1371524 [CrossRef]

  • [86] Y. Uenishi, K. Honna, and S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror”, Electron. Lett. 32, 1207–1208 (1996). http://dx.doi.org/10.1049/el:19960801 [CrossRef]

  • [87] M.-H. Kiang, O. Solgaard, R.S. Muller, and K.Y. Lau, “Silicon-micromachined micromirrors with integrated high-precision actuators for external-cavity semiconductor lasers”, IEEE Photonic. Techn. L. 8, 96–97 (1996).

  • [88] A.Q. Liu, X.M. Zhang, V.M. Murukeshan, and Y.L. Lam, “A novel integrated micromachined tunable laser using polysilicon 3-D mirror”, IEEE Photonic. Techn. L. 11, 427–429 (2001). http://dx.doi.org/10.1109/68.920739 [CrossRef]

  • [89] J.B.D. Soole, K. Poguntke, A. Scherer, H.P. LeBlanc, C. Chang-Hasnain, J.R. Hayes, C. Caneau, R. Bhat, and M.A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications”, Electron. Lett. 28, 1805–1807 (1992). http://dx.doi.org/10.1049/el:19921151 [CrossRef]

  • [90] P.A. Kirkby, “Multichannel wavelength-switched transmitters and receivers-new component concepts for broad-band networks and distributed switching systems”, J. Lightwave Technol. 8, 202–211 (1990). http://dx.doi.org/10.1109/50.47872 [CrossRef]

  • [91] O.K. Kwon, K.H. Kim, E.D. Sim, H.K. Yun, J.H. Kim, H.S. Kim, and K.R. Oh, “Proposal of electrically tunable external-cavity laser diode”, IEEE Photonic. Techn. L. 16, 1804–1806 (2004). http://dx.doi.org/10.1109/LPT.2004.831047 [CrossRef]

  • [92] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, H.S. Kim, and K.R. Oh, “Monolithically integrated grating cavity tunable lasers”, IEEE Photonic. Techn. L. 17, 1794–1796 (2005). http://dx.doi.org/10.1109/LPT.2005.853257 [CrossRef]

  • [93] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, and K.R. Oh, “Widely tunable multichannel grating cavity laser”, IEEE Photonic. Techn. L. 18, 1699–1701 (2006). http://dx.doi.org/10.1109/LPT.2006.879556 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Luis F. Gomez and Jaroslaw Sperling
Laser Technik Journal, 2015, Volume 12, Number 1, Page 22
[2]
A. Reiners, R. K. Banyal, and R. G. Ulbrich
Astronomy & Astrophysics, 2014, Volume 569, Page A77
[3]
Adrian Radu, Nicoleta Eseanu, and Ana Spandonide
Physics Letters A, 2014, Volume 378, Number 45, Page 3308
[4]
S. G. Li, Q. Gong, C. F. Cao, X. Z. Wang, J. Y. Yan, Y. Wang, and H. L. Wang
Optical and Quantum Electronics, 2014, Volume 46, Number 5, Page 623
[5]
Chun Ge, Meng Lu, Sherine George, Timothy A. Flood, Clark Wagner, Jie Zheng, Anusha Pokhriyal, J. Gary Eden, Paul J. Hergenrother, and Brian T. Cunningham
Lab on a Chip, 2013, Volume 13, Number 7, Page 1247
[6]
Richard A. Brownsword and Damien Weidmann
Optics Express, 2013, Volume 21, Number 2, Page 1581
[7]
Jie Zheng, Chun Ge, Clark J. Wagner, Meng Lu, Brian T. Cunningham, J. Darby Hewitt, and J. Gary Eden
Optics Express, 2012, Volume 20, Number 13, Page 14292
[8]
Alireza Khorsandi, Saeed Ghavami Sabouri, Somaieh Fathi, and Marzieh Asadnia-Jahromi
Optics & Laser Technology, 2011, Volume 43, Number 5, Page 956
[9]
E. Pruszyńska-Karbownik and B. Mroziewicz
Optics Communications, 2011, Volume 284, Number 1, Page 373
[10]
Wenbo Wang, Arkady Major, and Jitendra Paliwal
Applied Spectroscopy Reviews, 2012, Volume 47, Number 2, Page 116
[11]
Christopher R. Raum, Robert Gauthier, and R. Niall Tait
Microwave and Optical Technology Letters, 2011, Volume 53, Number 3, Page 672
[12]
Sebastian D. Saliba and Robert E. Scholten
Applied Optics, 2009, Volume 48, Number 36, Page 6961
[13]
Sebastian D. Saliba, Mark Junker, Lincoln D. Turner, and Robert E. Scholten
Applied Optics, 2009, Volume 48, Number 35, Page 6692
[14]
E. Kowalczyk, M. Szyjer, K. Fronc, and B. Mroziewicz
Opto-Electronics Review, 2009, Volume 17, Number 3

Comments (0)

Please log in or register to comment.