Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 27, 2008

Corrugated SNOM probe with enhanced energy throughput

  • T. Antosiewicz EMAIL logo and T. Szoplik
From the journal Opto-Electronics Review

Abstract

In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.

[1] E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag. 6, 356–362 (1928). Search in Google Scholar

[2] D.W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution l/20, Appl. Phys. Lett. 44, 651–653 (1984). http://dx.doi.org/10.1063/1.9486510.1063/1.94865Search in Google Scholar

[3] E. Betzig, P.L. Finn, and J.S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484–2486 (1992). http://dx.doi.org/10.1063/1.10694010.1063/1.106940Search in Google Scholar

[4] M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998. 10.1007/978-4-431-67937-0Search in Google Scholar

[5] J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409–426 (2007). http://dx.doi.org/10.1016/j.micron.2006.06.01010.1016/j.micron.2006.06.010Search in Google Scholar PubMed

[6] L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511813535Search in Google Scholar

[7] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4196 (1994). 10.1103/PhysRevE.50.4094Search in Google Scholar

[8] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233–241 (2006). http://dx.doi.org/10.2478/s11772-006-0031-z10.2478/s11772-006-0031-zSearch in Google Scholar

[9] A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679–3683 (2003). http://dx.doi.org/10.1063/1.158958310.1063/1.1589583Search in Google Scholar

[10] L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27–35 (2004). http://dx.doi.org/10.1111/j.0022-2720.2004.01308.x10.1111/j.0022-2720.2004.01308.xSearch in Google Scholar PubMed

[11] J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40–44 (2007). http://dx.doi.org/10.1111/j.1365-2818.2007.01821.x10.1111/j.1365-2818.2007.01821.xSearch in Google Scholar PubMed

[12] T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756–1758 (1997). http://dx.doi.org/10.1063/1.11939010.1063/1.119390Search in Google Scholar

[13] S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45–48 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00506-310.1016/S0030-4018(97)00506-3Search in Google Scholar

[14] T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090–2092 (1998). http://dx.doi.org/10.1063/1.12238710.1063/1.122387Search in Google Scholar

[15] P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981–986 (2002). http://dx.doi.org/10.1016/S0167-9317(02)00428-810.1016/S0167-9317(02)00428-8Search in Google Scholar

[16] S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32–37 (2006). http://dx.doi.org/10.1088/0957-0233/17/1/00710.1088/0957-0233/17/1/007Search in Google Scholar

[17] W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811–1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811 http://dx.doi.org/10.1109/JLT.2007.89769310.1109/JLT.2007.897693Search in Google Scholar

[18] E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005). http://dx.doi.org/10.1063/1.187574710.1063/1.1875747Search in Google Scholar

[19] K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832–846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-832 http://dx.doi.org/10.1364/OPEX.14.00083210.1364/OPEX.14.000832Search in Google Scholar PubMed

[20] T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920–10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920 http://dx.doi.org/10.1364/OE.15.01092010.1364/OE.15.010920Search in Google Scholar PubMed

[21] A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176–181 (2004). http://dx.doi.org/10.1016/j.jlumin.2003.12.05310.1016/j.jlumin.2003.12.053Search in Google Scholar

[22] T.J. Antosiewicz and T. Szoplik, “Description of near-and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845–7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 http://dx.doi.org/10.1364/OE.15.00784510.1364/OE.15.007845Search in Google Scholar

[23] C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001). Search in Google Scholar

[24] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). 10.1103/PhysRevB.6.4370Search in Google Scholar

[25] W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818 http://dx.doi.org/10.1364/OPEX.13.00481810.1364/OPEX.13.004818Search in Google Scholar PubMed

[26] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007. 10.1007/0-387-37825-1Search in Google Scholar

[27] A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field of an aperture tip”, Europhys. Lett. 66, 41–47 (2004). http://dx.doi.org/10.1209/epl/i2003-10138-710.1209/epl/i2003-10138-7Search in Google Scholar

Published Online: 2008-9-27
Published in Print: 2008-12-1

© 2008 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-008-0048-6/html
Scroll to top button