Jump to ContentJump to Main Navigation

Opto-Electronics Review

4 Issues per year


IMPACT FACTOR increased in 2013: 1.279
Rank 118 out of 247 in category Electrical & Electronic Engineering in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.531
Source Normalized Impact per Paper (SNIP): 1.209

VolumeIssuePage

Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers

1University of Warsaw

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 18, Issue 4, Pages 366–375, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-010-0044-5, September 2010

Publication History

Published Online:
2010-09-18

Abstract

Metal-dielectric layered stacks for imaging with sub-wavelength resolution are regarded as linear isoplanatic systems — a concept popular in Fourier optics and in scalar diffraction theory. In this context, a layered flat lens is a one-dimensional spatial filter characterised by the point spread function. However, depending on the model of the source, the definition of the point spread function for multilayers with sub-wavelength resolution may be formulated in several ways. Here, a distinction is made between a soft source and hard electric or magnetic sources. Each of these definitions leads to a different meaning of perfect imaging. It is shown that some simple interpretations of the PSF, such as the relation of its width to the resolution of the imaging system are ambiguous for the multilayers with sub-wavelenth resolution. These differences must be observed in point spread function engineering of layered systems with sub-wavelength sized PSF.

Keywords: superresolution; supercollimation; linear isoplanatic systems; point spread function engineering

  • [1] J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.3966 [CrossRef]

  • [2] S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Opt. 49, 1747–1762 (2002). http://dx.doi.org/10.1080/09500340110120950 [CrossRef]

  • [3] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction—limited optical imaging with a silver superlens”, Science 308, 534–537 (2005). http://dx.doi.org/10.1126/science.1108759 [CrossRef]

  • [4] D.O. Melville and R.J. Blaikie, “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005). http://dx.doi.org/10.1364/OPEX.13.002127 [CrossRef]

  • [5] S.A. Ramakrishna and J.B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain”, Phys. Rev. B67, 201101 (2003). [CrossRef]

  • [6] B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed. (2007).

  • [7] J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed. (2005).

  • [8] B. Lee, Ph. Lalanne, and Y. Fainman, “Plasmonic diffractive optics and imaging: feature introduction”, Appl. Optics 49, PDO1–PDO1 (2010), (together with the contents of the topical issue of Appl. Optics 49 on “Plasmonic diffractive optics and imaging”, Information Processing, 2010. http://dx.doi.org/10.1364/AO.49.00PDO1

  • [9] A. Wood, J.B. Pendry, and D.P. Tsai, “Directed subwave-length imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006). [CrossRef]

  • [10] M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007). http://dx.doi.org/10.1364/OE.15.000508 [CrossRef] [Web of Science]

  • [11] D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superre-solution and superguiding applications in the visible and near-IR ranges”, Phys. Rev. A77, 033848 (2008). [Web of Science]

  • [12] N.D. Mattiucci, D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517–17529 (2009). http://dx.doi.org/10.1364/OE.17.017517 [CrossRef]

  • [13] P.A. Belov, C. Simovski, and P. Ikonen, “Canalization of subwavelength images by electro-magnetic crystals”, Phys. Rev. B71, 193105 (2005). [CrossRef]

  • [14] P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006). [CrossRef]

  • [15] X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007). [Web of Science]

  • [16] R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes”, J. Opt. A-Pure Appl. Op. 11, 015001 (2009). http://dx.doi.org/10.1088/1464-4258/11/1/015001 [CrossRef] [Web of Science]

  • [17] R. Kotynski and T. Stefaniuk, “Multiscale analysis of sub-wavelength imaging with metal-dielectric multilayers”, Opt. Lett. 35, 1133–1135 (2010). http://dx.doi.org/10.1364/OL.35.001133 [CrossRef] [Web of Science]

  • [18] R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wave-length diffraction-free imaging with low-loss metal-dielectric multilayers”, ArXiv:1002.0658. (2010).

  • [19] A.M. Conforti, M. Guasoni, and C.D. Angelis, “Subwave-length diffraction management”, Opt. Lett. 33, 2662 (2008). http://dx.doi.org/10.1364/OL.33.002662 [CrossRef]

  • [20] O. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006). [CrossRef]

  • [21] C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009). http://dx.doi.org/10.1364/OE.17.014260 [CrossRef]

  • [22] D.O.S. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006). [CrossRef]

  • [23] P. Wrobel, J. Pniewski, T.J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by concentrically corrugated silver film without a hole”, Phys. Rev. Lett. 102, 183902 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.183902 [Web of Science] [CrossRef]

  • [24] C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009). http://dx.doi.org/10.1364/OE.17.014260 [CrossRef]

  • [25] X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007). [Web of Science]

  • [26] M.A. Vincenti, A. D’Orazio, M.G. Cappeddu, N. Akozbek, M.J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies”, J. Appl. Phys. 105, 103103 (2009). http://dx.doi.org/10.1063/1.3126712 [CrossRef] [Web of Science]

  • [27] C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses”, J. Opt. Soc. Am. A25, 911–918 (2008). http://dx.doi.org/10.1364/JOSAA.25.000911 [CrossRef]

  • [28] Q.M. Quan, S.L. Zhu, and R.P. Wang, “Refraction in the fixed direction at the surface of dielectric/silver superlattice”, Phys. Lett. A359, 547–549 (2006).

  • [29] X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites”, J. Opt. Soc. Am. A26, 2521–2525 (2009). http://dx.doi.org/10.1364/JOSAA.26.002521 [Web of Science] [CrossRef]

  • [30] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212 (1999). http://dx.doi.org/10.1063/1.123502 [CrossRef]

  • [31] R. Kotyśki, K. Król, J. Pniewski, and K. Panajotov, “Analysis of two-dimensional polarisation-coupled impulse response in multilayered metallic flat lens”, Proc. SPIE 6987, 69870G (2008). http://dx.doi.org/10.1117/12.786346

  • [32] Handbook of Optical Constants of Solids, edited by A. Palik, Academic Press, 1998.

  • [33] P. Markos and C.M. Soukoulis, Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials, Princeton University Press, Princeton and Oxford, 2008.

  • [34] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Comments (0)

Please log in or register to comment.