Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

99,00 € / $149.00 / £75.00*

See all formats and pricing

Select Volume and Issue
Loading journal volume and issue information...

Laser induced forward transfer of conducting polymers

1Physics Department, National Technical University of Athens, 9 Heroon Polytechniou Str., Zografou 15780, Athens, Greece

2Institute of Microelectronics, NCSR Demokritos, Agia Paraksevi 15310, Athens, Greece

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 18, Issue 4, Pages 345–351, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-010-0045-4, September 2010

Publication History

Published Online:


We report on laser printing of conducting polymers directly from the solid phase. Laser induced forward transfer is employed to deposit P3HT:PCBM films on glass/ITO/PEDOT:PSS substrates. P3HT:PCBM is widely used as the active material in organic solar cells. Polyaniline films, which are also printed by laser induced forward transfer, find many applications in the field of biotechnology. Laser printing parameters are optimized and results are presented. To apply solid-phase laser printing, P3HT:PCBM films are spun cast on quartz substrates, while aniline is in-situ polymerized on quartz substrates.

Keywords: laser printing; polyaniline; organic solar cells

  • [1] U. Lange, N.V. Roznyatovskaya, and V.M. Mirsky, “Conducting polymers in chemical sensors and arrays”, Anal. Chim. Acta 614, 1–26 (2008). http://dx.doi.org/10.1016/j.aca.2008.02.068 [CrossRef]

  • [2] J.C. Vidal, E. Garcia-Ruiz, and J.R. Castillo, “Recent advances in electropolymerized conducting polymers in amperometric biosensors”, Microchim. Acta 143, 93–111 (2003). http://dx.doi.org/10.1007/s00604-003-0067-4 [CrossRef]

  • [3] S.R. Forrest and M.E. Thompson, “Introduction: Organic electronics and optoelectronics”, Chem. Rev. 107, 923–925 (2007). http://dx.doi.org/10.1021/cr0501590 [CrossRef]

  • [4] B.C. Thomson and J.M.J. Frechet, “Polymer-fullerene composite solar cells”, Angew. Chem. Int. Edit. 47, 58–77 (2008). http://dx.doi.org/10.1002/anie.200702506 [CrossRef]

  • [5] F. Li, M.A. Winnik, A. Matvienko, and A. Mandelis, “Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives”, J. Mater. Chem. 17, 4309–4315 (2007). http://dx.doi.org/10.1039/b708707a [CrossRef]

  • [6] G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, and A. Mihranyan, “Ultrafast all-polymer paper-based batteries”, Nano Lett. 9, 3635–3639 (2009). http://dx.doi.org/10.1021/nl901852h [CrossRef]

  • [7] M. Saurin and S.P. Armes, “Study of the chemical polymerization of pyrrole onto printed circuit boards for electroplating applications”, J. Appl. Polym. Sci. 56, 41–50 (1995). http://dx.doi.org/10.1002/app.1995.070560106 [CrossRef]

  • [8] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future”, Adv. Mater. 12, 481–494 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C [CrossRef]

  • [9] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, 033306 (2008). http://dx.doi.org/10.1063/1.2833185 [CrossRef]

  • [10] S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing”, Appl. Phys. Lett. 79, 2996–2998 (2001). http://dx.doi.org/10.1063/1.1413501 [CrossRef]

  • [11] D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, and D.Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91, 081102 (2007). http://dx.doi.org/10.1063/1.2772766 [CrossRef]

  • [12] R.M. Swanson, “Photovoltaics power up”, Science 324, 891–892 (2009). http://dx.doi.org/10.1126/science.1169616 [CrossRef]

  • [13] S.A. Backer, K. Sivula, D.F. Kavulak, and J.M.J. Frechet, “High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives”, Chem. Mater. 19, 2927–2929 (2007). http://dx.doi.org/10.1021/cm070893v [CrossRef]

  • [14] E. Ahlswede, W. Mühleisen, M.W.M. Wahi, J. Hanisch, and M. Powalla, “Highly efficient organic solar cells with printable low-cost transparent contacts”, Appl. Phys. Lett. 92, 143307 (2008). http://dx.doi.org/10.1063/1.2907564 [CrossRef]

  • [15] C. Deibel, A. Baumann, and V. Dyakonov, “Polaron recombination in pristine and annealed bulk heterojunction solar cells”, Appl. Phys. Lett. 93, 163303 (2008). http://dx.doi.org/10.1063/1.3005593 [CrossRef]

  • [16] X. Chen, C. Zhao, L. Rothberg, and M.K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification”, Appl. Phys. Lett. 93, 123302 (2008). http://dx.doi.org/10.1063/1.2988190 [CrossRef]

  • [17] E. Kymakis, N. Kornilios, and E. Koudoumas, “Carbon nanotube doping of P3HT:PCBM photovoltaic devices”, J. Phys. D Appl. Phys. 41, 165110 (2008). http://dx.doi.org/10.1088/0022-3727/41/16/165110 [CrossRef]

  • [18] V.D. Mihailetchi, H. Xie, B. Boer, L.J.A. Koster, and P.W.M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells”, Adv. Funct. Mater. 16, 699–708 (2006). http://dx.doi.org/10.1002/adfm.200500420 [CrossRef]

  • [19] F.C. Chen, Y.K. Lin, and C.J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett. 92, 023307 (2008). http://dx.doi.org/10.1063/1.2835047 [CrossRef]

  • [20] C.W. Chu, H. Yang, W.J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells”, Appl. Phys. Lett. 92, 103306 (2008). http://dx.doi.org/10.1063/1.2891884 [CrossRef]

  • [21] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer”, Adv. Mater. 18, 572–576 (2006). http://dx.doi.org/10.1002/adma.200501825 [CrossRef]

  • [22] M.O. Reese, M.S. White, G. Rumbles, D.S. Ginley, and S.E. Shaheen, “Optimal negative electrodes for poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices”, Appl. Phys. Lett. 92, 053307 (2008). http://dx.doi.org/10.1063/1.2841067 [CrossRef]

  • [23] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617–1622 (2005). http://dx.doi.org/10.1002/adfm.200500211 [CrossRef]

  • [24] K. Kim, J. Liu, M.A.G. Namboothiry, and D.L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl. Phys. Lett. 90, 163511 (2007). http://dx.doi.org/10.1063/1.2730756 [CrossRef]

  • [25] C.J. Ko, Y.K. Lin, F.C. Chen, and C.W. Chu, “Modified buffer layers for polymer photovoltaic devices”, Appl. Phys. Lett. 90, 063509 (2007). http://dx.doi.org/10.1063/1.2437703 [CrossRef]

  • [26] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, and D.L. Carroll, “Meso-structure formation for enhanced organic photovoltaic cells”, Org. Lett. 7, 5749–5752 (2005). http://dx.doi.org/10.1021/ol051950y [CrossRef]

  • [27] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389, 827–829 (1997). http://dx.doi.org/10.1038/39827 [CrossRef]

  • [28] C.N. Hoth, P. Schilinsky, S.A. Choulis, and C.J. Brabec, “Printing highly efficient organic solar cells”, Nano Lett. 8, 2806–2813 (2008). http://dx.doi.org/10.1021/nl801365k [CrossRef]

  • [29] R. Green, A. Morfa, A.J. Ferguson, N. Kopidakis, G. Rumbles, and S.E. Shaheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition”, Appl. Phys. Lett. 92, 033301 (2008). http://dx.doi.org/10.1063/1.2836267 [CrossRef]

  • [30] F.C. Chen, H.C. Tseng, and C.J. Ko, “Solvent mixtures for improving device efficiency of polymer photovoltaic devices”, Appl. Phys. Lett. 92, 103316 (2008). http://dx.doi.org/10.1063/1.2898153 [CrossRef]

  • [31] G. Li, V. Shrotriya, J. Huangi, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864–868 (2005). http://dx.doi.org/10.1038/nmat1500 [CrossRef]

  • [32] D. Gupta, M. Bag, and K.S. Narayan, “Area dependent efficiency of organic solar cells”, Appl. Phys. Lett. 93, 163301 (2008). http://dx.doi.org/10.1063/1.2998540 [CrossRef]

  • [33] J.B. Emah, R.J. Curry, and S.R.P. Silva, “Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency”, Appl. Phys. Lett. 93, 103301 (2008). http://dx.doi.org/10.1063/1.2973342 [CrossRef]

  • [34] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, and C.J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funct. Mater. 15, 1193–1196 (2005). http://dx.doi.org/10.1002/adfm.200400521 [CrossRef]

  • [35] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, and R.A.J. Janssen, “Nanoscale morphology of high-performance polymer solar cells”, Nano Lett. 5, 579–583 (2005). http://dx.doi.org/10.1021/nl048120i [CrossRef]

  • [36] F. Padinger, R.S. Rittberger, and N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater. 13, 85–88 (2003). http://dx.doi.org/10.1002/adfm.200390011 [CrossRef]

  • [37] O. Yoshikawa, T. Sonobe, T. Sagawa, and S. Yoshikawa, “Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly(3-hexylthiophene) and fullerene derivative”, Appl. Phys. Lett. 94, 083301 (2009). http://dx.doi.org/10.1063/1.3077612 [CrossRef]

  • [38] V. Shrotriya, “Polymer power”, Nat. Photonics 3, 447–449 (2009). http://dx.doi.org/10.1038/nphoton.2009.130 [CrossRef]

  • [39] J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser”, J. Appl. Phys. 60, 1538–1539 (1986). http://dx.doi.org/10.1063/1.337287 [CrossRef]

  • [40] G.B. Blanchet, C.R. Fincher, and I. Malajovich, “Laser evaporation and the production of pentacene films”, J. Appl. Phys. 94, 6181–6184 (2003). http://dx.doi.org/10.1063/1.1601681 [CrossRef]

  • [41] R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer”, Appl. Phys. Lett. 91, 061103 (2007). http://dx.doi.org/10.1063/1.2759475 [CrossRef]

  • [42] S.H. Ko, H. Pan, S.G. Ryu, N. Misra, C.P. Grigoropoulos, and H.K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing”, Appl. Phys. Lett. 93, 151110 (2008). http://dx.doi.org/10.1063/1.3001803 [CrossRef]

  • [43] M.A. Rahman, P. Kumar, D.S. Park, and Y.B. Shim, “Electrochemical sensors based on organic conjugated polymers”, Sensors 8, 118–141 (2008). http://dx.doi.org/10.3390/s8010118 [CrossRef]

  • [44] N.M. Kocherginsky, W. Lei, and Z. Wang, “Redox reactions without direct contact of the reactants. Electron and ion coupled transport through polyaniline membrane”, J. Phys. Chem. A109, 4010–4016 (2005). [CrossRef]

  • [45] Z.F. Li and E. Ruckenstein, “Improved surface properties of polyaniline films by blending with Pluronic polymers without the modification of the other characteristics”, J. Colloid Interf. Sci. 264, 362–369 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00315-1 [CrossRef]

  • [46] N.B. Clark and L.J. Maher, “Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor”, React. Funct. Polym. 69, 594–600 (2009). http://dx.doi.org/10.1016/j.reactfunctpolym.2009.03.011 [CrossRef]

  • [47] S. Mu, C. Chen, and J. Wang, “The kinetic behavior for the electrochemical polymerization of aniline in aqueous solution”, Synthetic Met. 88, 249–254 (1997). http://dx.doi.org/10.1016/S0379-6779(97)03863-0 [CrossRef]

  • [48] A.C. Barton, S.D. Collyer, F. Davis, G.Z. Garifallou, G. Tsekenis, E. Tully, R. O’Kennedy, T. Gibson, P.A. Millner, and S.P.J. Higson, “Labeless AC impedimetric antibody-based sensors with pg ml-1 sensitivities for point-of-care biomedical applications”, Biosens. Bioelectron. 24, 1090–1095 (2009). http://dx.doi.org/10.1016/j.bios.2008.06.001

  • [49] A. Ramanavicius, A. Ramanaviciene, and A. Malinauskas, “Electrochemical sensors based on conducting polymer-polypyrrole”, Electrochim. Acta 51, 6025–6037 (2006). http://dx.doi.org/10.1016/j.electacta.2005.11.052 [CrossRef]

  • [50] J. Jang, J. Ha, and J. Cho, “Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications”, Adv. Mater. 19, 1772–1775 (2007). http://dx.doi.org/10.1002/adma.200602127 [CrossRef]

  • [51] J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, “In-situ polymerized polyaniline films”, Synthetic Met. 105, 195–202 (1999). http://dx.doi.org/10.1016/S0379-6779(99)00105-8 [CrossRef]

  • [52] D.P. Banks, C. Grivas, I. Zergioti, and R.W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor”, Opt. Express 16, 3249–3254 (2008). http://dx.doi.org/10.1364/OE.16.003249 [CrossRef]

  • [53] H. Esrom, J.Y. Zhang, U. Kogelschatz, and A.J. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films”, Appl. Surf. Sci. 86, 202–207 (1995). http://dx.doi.org/10.1016/0169-4332(94)00385-8 [CrossRef]

  • [54] I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses”, Appl. Phys. A66, 579–582 (1998). [CrossRef]

  • [55] D. Toet, P.M. Smith, T.W. Sigmon, and M.O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure”, J. Appl. Phys. 87, 3537–3546 (2000). http://dx.doi.org/10.1063/1.372378 [CrossRef]

  • [56] B. Thomas, A.P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films”, Appl. Surf. Sci. 254, 1206–1210 (2007). http://dx.doi.org/10.1016/j.apsusc.2007.09.042 [CrossRef]

  • [57] N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules”, Appl. Phys. Lett. 94, 103306 (2009). http://dx.doi.org/10.1063/1.3098375 [CrossRef]

  • [58] I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials”, Appl. Phys. Lett. 86, 163902 (2005). http://dx.doi.org/10.1063/1.1906325 [CrossRef]

  • [59] P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, and J.L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation”, JLMN 1, 236–242 (2006). http://dx.doi.org/10.2961/jlmn.2006.03.0017 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jinda Lin, Adam G. Hart, and Yong-qing Li
Applied Physics Letters, 2015, Volume 106, Number 17, Page 171906
I. Sta, M. Jlassi, M. Kandyla, M. Hajji, P. Koralli, R. Allagui, M. Kompitsas, and H. Ezzaouia
Journal of Alloys and Compounds, 2015, Volume 626, Page 87
M. Colina, A. Morales-Vilches, C. Voz, I. Martín, P. Ortega, A. Orpella, G. López, and R. Alcubilla
Applied Surface Science, 2015, Volume 336, Page 89
James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason
Optical Materials Express, 2013, Volume 3, Number 6, Page 747
M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis, and I. Zergioti
Applied Physics A, 2013, Volume 110, Number 3, Page 623
Daniel Tobjörk and Ronald Österbacka
Advanced Materials, 2011, Volume 23, Number 17, Page 1935

Comments (0)

Please log in or register to comment.