Jump to ContentJump to Main Navigation

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

IMPACT FACTOR increased in 2014: 1.667
Rank 90 out of 249 in category Electrical & Electronic Engineering, 38 out of 86 in Optics and 67 out of 143 in Applied Physics in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.653
Source Normalized Impact per Paper (SNIP) 2014: 1.272
Impact per Publication (IPP) 2014: 1.413


Ultrasensitive laser spectroscopy for breath analysis

1Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland

2Institute of Experimental Physics, University of Warsaw, 69 Hoża Str., 00-068, Warsaw, Poland

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 20, Issue 1, Pages 26–39, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-012-0011-4, December 2011

Publication History

Published Online:


At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases’ biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.

Keywords: trace matter detection; breath analysis; diseases biomarkers; absorption spectroscopy; laser spectroscopy; multi-pass spectroscopy; MPS; cavity ring-down spectroscopy; CRDS; cavity enhanced absorption spectroscopy; CEAS; photoacoustic spectroscopy; PAS

  • [1] American Thoracic Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am. J. Respir. Crit. CareMed. 171, 912–930 (2005). http://dx.doi.org/10.1164/rccm.200406-710ST [CrossRef]

  • [2] A. Michalski, Metrology in Medicine — Selected Problems, Military University of Technology Publishing Office, Warsaw, 2011.

  • [3] L. Pauling, A.B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapour and breath by gas-liquid partition chromatography”, P. Natl. Acad. Sci. USA 68, 2374–2384 (1971). http://dx.doi.org/10.1073/pnas.68.10.2374 [CrossRef]

  • [4] H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, and J.P. Szidon, “A computerized classification technique for screening for the presence of breath biomarkers in lung cancer”, Clin. Chem. 34, 1613–1618 (1988).

  • [5] C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sensors 9, 8230–8262 (2009). http://dx.doi.org/10.3390/s91008230 [CrossRef]

  • [6] T. Kondo, T. Mitsui, M. Kitagawa, and Y. Nakae, “Association of fasting breath nitrous oxide concentration with gastric juice nitrate and nitrite concentrations and helicobacter pylori infection”, Digest. Dis. Sci. 45, 2054–2057 (2000). http://dx.doi.org/10.1023/A:1005607120708 [CrossRef]

  • [7] R.A. Dweik, D. Laskowski, H.M. Abu-Soud, F.T. Kaneko, R. Hutte, D.J. Stuehr, and S.C. Erzurum, “Nitric oxide synthesis in the lung, regulation by oxygen through a kinetic mechanism”, J. Clin. Invest. 101, 660–666 (1998). http://dx.doi.org/10.1172/JCI1378 [CrossRef]

  • [8] B. Enderby, D. Smith, W. Carroll, and W. Lenney, “Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis”, Pediatr. Pulm. 44, 142–147 (2009). http://dx.doi.org/10.1002/ppul.20963 [CrossRef]

  • [9] Z. Witkiewicz, Principles of Chromatography, Scientific-Technical Publishers (WNT), Warsaw, 2000. (in Polish)

  • [10] W. Mueller, J. Schubert, A. Benzing, and K. Geiger, “Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry”, J. Chromatogr. B716, 27–38 (1998).

  • [11] X. Chen, F. Xu, Y. Wang, Y. Pan, D. Lu, and P. Wang, “A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis”, Cancer 110, 835–844 (2007). http://dx.doi.org/10.1002/cncr.22844 [CrossRef]

  • [12] A. Ulanowska, T. Ligor, M. Michel, and B. Buszewski, “Hyphenated and unconventional methods for searching volatile cancer biomarkers”, Ecol. Chem. En. 17, 9–23 (2010).

  • [13] http://www.chromacademy.com/resolver/nov2010/fig-jpg

  • [14] http://sift-ms.net/user/cimage/SiftMsColourpng

  • [15] T. Pustelny, Physical and Technical Aspects of Optoelectronic Sensors, Silesian University of Technology Publishing Office, 2005.

  • [16] http://www.tms.org/pubs/journals/JOM/0010/Ivanov/Ivanov-0010.html

  • [17] http://www.nature.com/nmat/journal/v2/n1/full/nmat768.html

  • [18] A. Bratkowski, A. Korcala, Z. Łukasik, P. Borowski, and W. Bala, “Novel gas sensor based on porous silicon measured by photovoltage, photoluminescence, and admittance spectroscopy”, Opto-Electron. Rev. 13, 35–38 (2005).

  • [19] R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbieć, “Selected application of near-infrared optical methods in medical diagnosis”, Opto-Electron. Rev. 12, 255–262 (2004).

  • [20] J. Puton, K. Jasek, B. Siodłowski, A. Knap, and K. Wiśniewski, “Optimization of a pulsed IR source for NDIR gas analysis”, Opto-Electron. Rev. 10, 97–103 (2002).

  • [21] M. Walczak, “Operant conditioning of dogs for detection of odour markers of cancer diseases”, PhD Dissertation, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Warsaw, Poland, 2009. (in Polish)

  • [22] P. Kowalczyk, Physics of Molecules, Polish Scientific Publishers (PWN), Warsaw, 2000. (in Polish)

  • [23] M.F. Merienne, A. Jenouvrier, and B. Coquart, “The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region”, J. Atmos. Chem. 20, 281–297 (1995). http://dx.doi.org/10.1007/BF00694498

  • [24] M.I. Mazurenka, B.I. Fawcett, J.M.F. Elks, D.E. Shallcross, and A.J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2”, Chem. Phys. Lett. 367, 1–9 (2003). http://dx.doi.org/10.1016/S0009-2614(02)01652-4 [CrossRef]

  • [25] J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006).

  • [26] K. Holc, Z. Bielecki, J. Wojtas, P. Perlin, J. Goss, A. Czyżewski, P. Magryta, and T. Stacewicz, “Blue tunable laser diodes for trace matter detection”, Opt. Appl. 40, 641–651 (2010).

  • [27] T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, (2012). (in press) [CrossRef]

  • [28] http://www.cfa.harvard.edu/HITRAN/

  • [29] J. Wojtas, J. Mikołajczyk, M. Nowakowski, B. Rutecka, R. Mędrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, B. Pol. Acad. Sci-Te. 59, No. 4 (brak stron) (2011).

  • [30] http://badc.nerc.ac.uk/data/esa-wv

  • [31] http://www.nist.gov/pml/data/xcom/index.cfm

  • [32] http://www.teledyne-ai.com/pdf/lga-3500.pdf

  • [33] J.M. Chalmers, Mid-infrared Spectroscopy. Spectroscopy in Process Analysis, CRC Press LLC, 117, 1999.

  • [34] http://www.ipm.fraunhofer.de

  • [35] A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988). http://dx.doi.org/10.1063/1.1139895 [CrossRef]

  • [36] K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace–Absorption Measurement Technique, ACS Symposium Series, American Chemical Society, Washington DC, 1999.

  • [37] G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, 2009.

  • [38] Z. Bielecki and T. Stacewicz, Optoelectronic Sensor of Nitrogen Dioxide, Analysis and Construction Requirements, Military University of Technology Publishing Office, Warsaw, 2011. (in Polish)

  • [39] D. Romanini, A.A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy”, Chem. Phys. Lett. 264, 316–322 (1997). http://dx.doi.org/10.1016/S0009-2614(96)01351-6 [CrossRef]

  • [40] G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications”, Int. Rev. Phys. Chem. 19, 565–607 (2000). http://dx.doi.org/10.1080/014423500750040627 [CrossRef]

  • [41] J. Ye, L.S. Ma, and J.L. Hall, “Ultrastable optical frequency reference at 064 μm using a C2HD molecular overtone transition”, IEEE T. Instrument. Meas. 46, 178–182 (1997). http://dx.doi.org/10.1109/19.571806

  • [42] R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998). http://dx.doi.org/10.1063/1.1149176 [CrossRef]

  • [43] J.D. Ayers, R.L. Apodaca, W.R. Simpson, and D.S. Baer, “Off-axis cavity ring-down spectroscopy: application to atmospheric nitrate radical detection”, Appl. Opt. 44, 7239–7242 (2005). http://dx.doi.org/10.1364/AO.44.007239 [CrossRef]

  • [44] L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 859–863 (2001). [CrossRef]

  • [45] J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Opt. 19, 144–147 (1980). http://dx.doi.org/10.1364/AO.19.000144 [CrossRef]

  • [46] F.K. Tittel, Yu. Bakhirkin, A.A. Kosterev, G. Wysocki, and S. So & R.F. Curl, “Recent advances of quantum and inter-band cascade laser based gas sensor technology”, www.lancs.ac.uk/depts/spc/conf/miomd-7/Tittel.ppt

  • [47] V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, “Quantum-cascade-laser-based optoacoustic detection for breath sensor applications”, IEEE 978, 332–335 (2011).

  • [48] A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption”, Chem. Phys. Lett. 293, 331–336 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00785-4 [CrossRef]

  • [49] A. O’Keefe, J.J. Scherer, and J.B. Paul, “CW integrated cavity output spectroscopy”, Chem. Phys. Lett. 307, 343–349 (1999). http://dx.doi.org/10.1016/S0009-2614(99)00547-3 [CrossRef]

  • [50] H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001). http://dx.doi.org/10.1007/s003400000509 [CrossRef]

  • [51] D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a diffe rence frequency generation spectrometer”, Appl. Phys. B-Lasers O. 85, 437–443 (2006). http://dx.doi.org/10.1007/s00340-006-2288-9 [CrossRef]

  • [52] D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulphide”, Opt. Lett. 30, 2314–2316 (2005). http://dx.doi.org/10.1364/OL.30.002314 [CrossRef]

  • [53] T. Starecki, Selected Aspects of Photoacoustic Instruments Optimization, BTC, Legionowo, 2009.

  • [54] A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, and F.K. Tittel, “Quartz-enhanced photoacoustic spectroscopy”, Opt. Lett. 27, 1902–1904 (2002). http://dx.doi.org/10.1364/OL.27.001902 [CrossRef]

  • [55] R.F. Curl and F.K. Tittel, “Tunable infrared laser spectroscopy”, Annu. Rep. Prog. Chem. Sect. C98, 217–270 (2002). http://dx.doi.org/10.1039/b111194a [CrossRef]

  • [56] F.K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy”, Springer. Topics Appl. Phys. 89, 445–510 (2003).

  • [57] A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005). http://dx.doi.org/10.1063/1.1884196 [CrossRef]

  • [58] M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska Karbownik, K. Pierściński, and D. Pierścińska, “GaAs/AlGaAs (9.4 μm) quantum cascade lasers operating at 260 K”, B. Pol. Acad. Sci-Te. 58, 471–476 (2010).

  • [59] http://echozycia.ddsoft.pl/Files/file/%C5%81owcy%20oddech%C3%B3w.pdf

  • [60] P.C. Kamat, C.B. Roller, K. Namjou, J.D. Jeffers, A. Faramarzalian, R. Salas, and P.J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer”, Appl. Opt. 46, 3969–3975 (2007). http://dx.doi.org/10.1364/AO.46.003969 [CrossRef]

  • [61] C. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol. 18, 2731–2741 (2007). http://dx.doi.org/10.1088/0957-0233/18/8/051 [CrossRef]

  • [62] C. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ring-down breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C”, IEEE Sens. 10, 54–63 (2010). http://dx.doi.org/10.1109/JSEN.2009.2035730

  • [63] C. Wang and A.B. Surampudi, “An acetone breath analyzer using cavity ring-down spectroscopy: an initial test with human subjects under various situations”, Meas. Sci. Technol. 19, 105604–105614 (2008). http://dx.doi.org/10.1088/0957-0233/19/10/105604 [CrossRef]

  • [64] L.R. Narasimhan, W. Goodman, and C.K.N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis”, P. Natl. Acad. Sci. USA 98, 4617–4621 (2001). http://dx.doi.org/10.1073/pnas.071057598 [CrossRef]

  • [65] U. Lachish, S. Rotter, E. Adler, and U. El-Hanany, “Tunable diode laser based spectroscopic system for ammonia detection in human respiration”, Rev. Sci. Instrum. 58, 923–927 (1987). http://dx.doi.org/10.1063/1.1139577 [CrossRef]

  • [66] J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath”, Appl. Opt. 45, 9230–9237 (2006). http://dx.doi.org/10.1364/AO.45.009230 [CrossRef]

  • [67] J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques”, Appl. Phys. B-Lasers O. 94, 337–344 (2009). http://dx.doi.org/10.1007/s00340-008-3285-y [CrossRef]

  • [68] K.L. Moskalenko, A.I. Nadezhdinskii, and I.A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique”, Infrared Phys. Techn. 37, 181–192 (1996). http://dx.doi.org/10.1016/1350-4495(95)00097-6 [CrossRef]

  • [69] M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis”, Opt. Express 16, 2387–2397 (2008). http://dx.doi.org/10.1364/OE.16.002387 [CrossRef]

  • [70] R. Lewicki, A.A. Kosterev, Y.A. Bakhirkin, D.M. Thomazy, J. Doty, L. Dong, and F.K. Tittel, “Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor”, IEEE 978, 1–2 (2009).

  • [71] M.M.J.W. Van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, and F.J.M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects”, Appl. Phys. B-Lasers O. 82, 665–669 (2006). http://dx.doi.org/10.1007/s00340-005-2119-4 [CrossRef]

  • [72] E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanow, B.A. Paldus, T.G. Spence, and R.N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath”, Anal. Chem. 74, 2003–2007 (2002). http://dx.doi.org/10.1021/ac025511d [CrossRef]

  • [73] V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 57 μm”, Sens. Actuat. B29, 101–107 (1995).

  • [74] G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, and F.K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulphide”, Appl. Opt. 43, 6040–6046 (2004). http://dx.doi.org/10.1364/AO.43.006040 [CrossRef]

  • [75] Ch. Roller, A.A. Kosterev, F.K. Tittel, K. Uehara, C. Gmachl, and D.L. Sivco, “Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser”, Opt. Lett. 28, 2052–2054 (2003). http://dx.doi.org/10.1364/OL.28.002052 [CrossRef]

  • [76] M.R. McCurdy, Y. Bakhirkin, G. Wysocki, and F.K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy”, J. Biomed. Opt. 12, 034034:1–034034:9 (2007). http://dx.doi.org/10.1117/1.2747608 [CrossRef]

  • [77] R. Bartlome and M.W. Sigrist, “Laser based human breath analysis: D/H isotope ratio increases following heavy water intake”, Opt. Lett. 34, 866–868 (2009). http://dx.doi.org/10.1364/OL.34.000866 [CrossRef]

  • [78] K.R. Parameswaran, D.I. Rosen, M.G. Allen, A.M. Ganz, and T.H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements”, Appl. Opt. 48, B73–B79 (2009). http://dx.doi.org/10.1364/AO.48.000B73 [CrossRef]

  • [79] K.D. Skeldon, L.C. McMillan, C.A. Wyse, S.D. Monk, G. Gibson, C. Patterson,; T. France, C. Longbottom, and M.J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer”, Respir. Med. 100, 300–306 (2006). http://dx.doi.org/10.1016/j.rmed.2005.05.006 [CrossRef]

  • [80] H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001). http://dx.doi.org/10.1007/s003400000509 [CrossRef]

  • [81] G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer”, Opt. Lett. 29, 797–799 (2004). http://dx.doi.org/10.1364/OL.29.000797 [CrossRef]

  • [82] C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, and K.D. Skeldon, “Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy”, J. Breath Res. 1, 026005:1–026005:8 (2007). http://dx.doi.org/10.1088/1752-7155/1/2/026005 [CrossRef]

  • [83] K.D. Skeldon, C. Patterson, C.A. Wyse, G.M. Gibson, M.J. Padgett, C. Longbottom, and L.C McMillan, “The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy”, J. Opt. A-Pure Appl. Op. 7, S376–S384 (2005). http://dx.doi.org/10.1088/1464-4258/7/6/019 [CrossRef]

  • [84] A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath”, Int. J. Environ. A. Ch. 85, 1001–1012 (2005). http://dx.doi.org/10.1080/03067310500154395 [CrossRef]

  • [85] D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, and V. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis”, Rom. Rep. Phys. 60, 593–602 (2008).

  • [86] J.H. Miller, Y.A. Bakhirkin, T. Ajtai, F.K. Tittel, C.J. Hill, and R.Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser”, Appl. Phys. — Laser O. 85, 391–396 (2006). http://dx.doi.org/10.1007/s00340-006-2310-2 [CrossRef]

  • [87] D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN”, Appl. Phys. B-Laser O. 72, 947–952 (2001). http://dx.doi.org/10.1007/s003400100549 [CrossRef]

  • [88] H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Murtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 75, 311–316 (2002). http://dx.doi.org/10.1007/s00340-002-0986-5 [CrossRef]

  • [89] M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level”, Appl. Phys. B-Lasers O. 85, 285–288 (2006). http://dx.doi.org/10.1007/s00340-006-2295-x [CrossRef]

  • [90] M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, and R.Q. Yang, “Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy”, Appl. Phys. B-Lasers O. 79, 799–803 (2004). http://dx.doi.org/10.1007/s00340-004-1659-3 [CrossRef]

  • [91] D. Richter, A. Fried, B.P. Wert, J.G. Walega, and F.K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection”, Appl. Phys. B-Lasers O. 75, 281–288 (2002). http://dx.doi.org/10.1007/s00340-002-0948-y [CrossRef]

  • [92] L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, and G.A.D. Ritchie, “3.5-μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module”, Appl. Phys. B-Lasers O. 94, 517–525 (2009). http://dx.doi.org/10.1007/s00340-008-3291-0

  • [93] D. Marinov, J.M. Rey, M.G. Muller, and M.W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer”, Appl. Opt. 46, 3981–3986 (2007). http://dx.doi.org/10.1364/AO.46.003981 [CrossRef]

  • [94] Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection”, Appl. Opt. 43, 2257–2266 (2004). http://dx.doi.org/10.1364/AO.43.002257 [CrossRef]

  • [95] K. Namjou, C.B. Roller, T.E. Reich, J.D. Jeffers, G.L. McMillen, P.J. McCann, and M.A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy”, Appl. Phys. B-Lasers O., 85, 427–435 (2006). http://dx.doi.org/10.1007/s00340-006-2301-3 [CrossRef]

  • [96] L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B-Lasers O. 72, 859–863 (2001). http://dx.doi.org/10.1007/s003400100562 [CrossRef]

  • [97] A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, and A.Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser”, Appl. Opt. 40, 5522–5529 (2001). http://dx.doi.org/10.1364/AO.40.005522 [CrossRef]

  • [98] C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, and J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation”, Appl. Opt. 41, 6018–6029 (2002). http://dx.doi.org/10.1364/AO.41.006018 [CrossRef]

  • [99] K. Namjou, C.B. Roller, and G. McMillen, “Breath analysis using mid infrared tunable laser spectroscopy”, Proc. 6th Ann. IEEE Conf. on Sensors, Atlanta, GA, 1337–1340 (2007).

  • [100] K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath”, Appl. Phys. B-Lasers O. 95, 281–286 (2009). http://dx.doi.org/10.1007/s00340-009-3423-1 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Katherine M. Manfred, James M. R. Kirkbride, Luca Ciaffoni, Robert Peverall, and Grant A. D. Ritchie
Optics Letters, 2014, Volume 39, Number 24, Page 6811
Nicholas J.W. Rattray, Zahra Hamrang, Drupad K. Trivedi, Royston Goodacre, and Stephen J. Fowler
Trends in Biotechnology, 2014, Volume 32, Number 10, Page 538
Vladimir L. Vaks, Elena G. Domracheva, Ekaterina A. Sobakinskaya, and Mariya B. Chernyaeva
Uspekhi Fizicheskih Nauk, 2014, Volume 184, Number 7, Page 739
Igor Peshko, Romuald Pawluczyk, and Dale Wick
Journal of Low Power Electronics and Applications, 2013, Volume 3, Number 2, Page 114
Ulrike Tisch and Hossam Haick
Journal of Breath Research, 2014, Volume 8, Number 2, Page 027103
Stamatios Giannoukos, Boris Brkić, Stephen Taylor, and Neil France
Analytical Chemistry, 2014, Volume 86, Number 2, Page 1106
J. Mikołajczyk, W. Pichola, J. Wojtas, M. Mamajek, M. Garlińska, A. Prokopiuk, and Z. Bielecki
Acta Physica Polonica A, 2013, Volume 124, Number 3, Page 505

Comments (0)

Please log in or register to comment.